| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 202675.a1 |
202675a1 |
202675.a |
202675a |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{2} \cdot 67 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1.022127149$ |
$1$ |
|
$10$ |
$201600$ |
$0.537309$ |
$-225280/67$ |
$0.60031$ |
$2.48876$ |
$[0, 1, 1, -458, 4494]$ |
\(y^2+y=x^3+x^2-458x+4494\) |
134.2.0.? |
$[(8, 37), (-17, 87)]$ |
| 202675.b1 |
202675b1 |
202675.b |
202675b |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{6} \cdot 11^{10} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10321920$ |
$2.543449$ |
$7382979842048/4403471083$ |
$0.96263$ |
$4.39255$ |
$[0, 1, 1, 1227142, 91996944]$ |
\(y^2+y=x^3+x^2+1227142x+91996944\) |
134.2.0.? |
$[ ]$ |
| 202675.c1 |
202675c1 |
202675.c |
202675c |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$2.352847683$ |
$1$ |
|
$2$ |
$248832$ |
$0.502894$ |
$45056/1675$ |
$0.69808$ |
$2.39906$ |
$[0, 1, 1, 92, -2656]$ |
\(y^2+y=x^3+x^2+92x-2656\) |
134.2.0.? |
$[(43, 287)]$ |
| 202675.d1 |
202675d1 |
202675.d |
202675d |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{4} \cdot 11^{4} \cdot 67^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1.729503185$ |
$1$ |
|
$8$ |
$354240$ |
$1.074326$ |
$334540800/300763$ |
$1.05560$ |
$2.91812$ |
$[0, 0, 1, 3025, -47644]$ |
\(y^2+y=x^3+3025x-47644\) |
134.2.0.? |
$[(99, 1105), (1166/7, 66527/7)]$ |
| 202675.e1 |
202675e1 |
202675.e |
202675e |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{10} \cdot 11^{10} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$19483200$ |
$3.077991$ |
$334540800/300763$ |
$1.05560$ |
$4.88582$ |
$[0, 0, 1, 9150625, 7926728906]$ |
\(y^2+y=x^3+9150625x+7926728906\) |
134.2.0.? |
$[ ]$ |
| 202675.f1 |
202675f1 |
202675.f |
202675f |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{8} \cdot 67 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$8.106550602$ |
$1$ |
|
$4$ |
$443520$ |
$0.931538$ |
$-225280/67$ |
$0.60031$ |
$2.87592$ |
$[0, -1, 1, -2218, -48742]$ |
\(y^2+y=x^3-x^2-2218x-48742\) |
134.2.0.? |
$[(81, 544), (5526, 410734)]$ |
| 202675.g1 |
202675g1 |
202675.g |
202675g |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{4} \cdot 11^{4} \cdot 67^{5} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$0.320061356$ |
$1$ |
|
$16$ |
$1792800$ |
$1.994135$ |
$-1020329117085025/1350125107$ |
$0.95651$ |
$4.14019$ |
$[1, 0, 0, -438688, 111927267]$ |
\(y^2+xy=x^3-438688x+111927267\) |
134.2.0.? |
$[(351, 930), (6563/2, 487227/2)]$ |
| 202675.h1 |
202675h1 |
202675.h |
202675h |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{20} \cdot 11^{8} \cdot 67^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$48.59114878$ |
$1$ |
|
$0$ |
$1877686272$ |
$5.414299$ |
$2302197464086783629848471/36991647981707763671875$ |
$1.03169$ |
$7.21992$ |
$[1, 0, 0, 41158555287, -16627446124514708]$ |
\(y^2+xy=x^3+41158555287x-16627446124514708\) |
134.2.0.? |
$[(512347680831343556550636/124296229, 366705549740152302163855055706496736/124296229)]$ |
| 202675.i1 |
202675j1 |
202675.i |
202675j |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{10} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$3.709649055$ |
$1$ |
|
$2$ |
$115920$ |
$0.773746$ |
$-7425/67$ |
$0.67037$ |
$2.66886$ |
$[1, -1, 1, -430, 14072]$ |
\(y^2+xy+y=x^3-x^2-430x+14072\) |
134.2.0.? |
$[(-10, 136)]$ |
| 202675.j1 |
202675i1 |
202675.j |
202675i |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{4} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$4.685332860$ |
$1$ |
|
$2$ |
$255024$ |
$1.167974$ |
$-7425/67$ |
$0.67037$ |
$3.05601$ |
$[1, -1, 1, -2080, -148178]$ |
\(y^2+xy+y=x^3-x^2-2080x-148178\) |
134.2.0.? |
$[(70, 178)]$ |
| 202675.k1 |
202675k1 |
202675.k |
202675k |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{11} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2948$ |
$2$ |
$0$ |
$2.438828600$ |
$1$ |
|
$2$ |
$4104000$ |
$2.300961$ |
$144672215/10790417$ |
$0.85836$ |
$4.16585$ |
$[1, 0, 0, 96737, 130969642]$ |
\(y^2+xy=x^3+96737x+130969642\) |
2948.2.0.? |
$[(2166, 101404)]$ |
| 202675.l1 |
202675l1 |
202675.l |
202675l |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$259200$ |
$0.899280$ |
$-744385/8107$ |
$0.74264$ |
$2.79174$ |
$[1, 1, 1, -668, -29864]$ |
\(y^2+xy+y=x^3+x^2-668x-29864\) |
134.2.0.? |
$[ ]$ |
| 202675.m1 |
202675m1 |
202675.m |
202675m |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$6.864543835$ |
$1$ |
|
$0$ |
$1824768$ |
$1.804272$ |
$-63088729/1675$ |
$0.74420$ |
$3.83365$ |
$[1, 1, 1, -124088, -17257844]$ |
\(y^2+xy+y=x^3+x^2-124088x-17257844\) |
134.2.0.? |
$[(18311/5, 2066094/5)]$ |
| 202675.n1 |
202675n1 |
202675.n |
202675n |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{10} \cdot 11^{10} \cdot 67^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$64$ |
$2$ |
$0$ |
$98604000$ |
$3.997803$ |
$-1020329117085025/1350125107$ |
$0.95651$ |
$6.10789$ |
$[1, 1, 1, -1327031263, -18628534203344]$ |
\(y^2+xy+y=x^3+x^2-1327031263x-18628534203344\) |
134.2.0.? |
$[ ]$ |
| 202675.o1 |
202675o1 |
202675.o |
202675o |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$3.196145591$ |
$1$ |
|
$0$ |
$892800$ |
$1.783281$ |
$-163840000/8107$ |
$0.85163$ |
$3.78574$ |
$[0, 1, 1, -100833, -12873756]$ |
\(y^2+y=x^3+x^2-100833x-12873756\) |
134.2.0.? |
$[(1557/2, 21171/2)]$ |
| 202675.p1 |
202675q1 |
202675.p |
202675q |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{14} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3536640$ |
$2.407665$ |
$-62565106708480000/14362045027$ |
$0.99926$ |
$4.60594$ |
$[0, 1, 1, -2926183, 1926045974]$ |
\(y^2+y=x^3+x^2-2926183x+1926045974\) |
134.2.0.? |
$[ ]$ |
| 202675.q1 |
202675p1 |
202675.q |
202675p |
$2$ |
$3$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{6} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4422$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$604800$ |
$1.459459$ |
$-10485760/67$ |
$0.88269$ |
$3.55496$ |
$[0, 1, 1, -40333, -3148381]$ |
\(y^2+y=x^3+x^2-40333x-3148381\) |
3.4.0.a.1, 33.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 4422.16.0.? |
$[ ]$ |
| 202675.q2 |
202675p2 |
202675.q |
202675p |
$2$ |
$3$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{6} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$4422$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1814400$ |
$2.008766$ |
$218071040/300763$ |
$0.89954$ |
$3.82898$ |
$[0, 1, 1, 110917, -16685256]$ |
\(y^2+y=x^3+x^2+110917x-16685256\) |
3.4.0.a.1, 33.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 4422.16.0.? |
$[ ]$ |
| 202675.r1 |
202675r1 |
202675.r |
202675r |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{6} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$268800$ |
$1.312107$ |
$-884736/1675$ |
$1.01110$ |
$3.20712$ |
$[0, 0, 1, -6050, -374344]$ |
\(y^2+y=x^3-6050x-374344\) |
134.2.0.? |
$[ ]$ |
| 202675.s1 |
202675t1 |
202675.s |
202675t |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$5.079614211$ |
$1$ |
|
$2$ |
$937728$ |
$1.711393$ |
$2883584/1675$ |
$0.85286$ |
$3.57747$ |
$[0, -1, 1, 44367, -235082]$ |
\(y^2+y=x^3-x^2+44367x-235082\) |
134.2.0.? |
$[(19562, 2736112)]$ |
| 202675.t1 |
202675u1 |
202675.t |
202675u |
$2$ |
$3$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{6} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$22110$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$120960$ |
$0.654741$ |
$-10485760/67$ |
$0.88269$ |
$2.76469$ |
$[0, -1, 1, -1613, -24542]$ |
\(y^2+y=x^3-x^2-1613x-24542\) |
3.4.0.a.1, 134.2.0.?, 165.8.0.?, 402.8.0.?, 22110.16.0.? |
$[ ]$ |
| 202675.t2 |
202675u2 |
202675.t |
202675u |
$2$ |
$3$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{6} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$22110$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$362880$ |
$1.204048$ |
$218071040/300763$ |
$0.89954$ |
$3.03870$ |
$[0, -1, 1, 4437, -135257]$ |
\(y^2+y=x^3-x^2+4437x-135257\) |
3.4.0.a.1, 134.2.0.?, 165.8.0.?, 402.8.0.?, 22110.16.0.? |
$[ ]$ |
| 202675.u1 |
202675s1 |
202675.u |
202675s |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{14} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17683200$ |
$3.212387$ |
$-62565106708480000/14362045027$ |
$0.99926$ |
$5.39621$ |
$[0, -1, 1, -73154583, 240902055943]$ |
\(y^2+y=x^3-x^2-73154583x+240902055943\) |
134.2.0.? |
$[ ]$ |
| 202675.v1 |
202675v1 |
202675.v |
202675v |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$18.08108723$ |
$1$ |
|
$0$ |
$178560$ |
$0.978561$ |
$-163840000/8107$ |
$0.85163$ |
$2.99547$ |
$[0, -1, 1, -4033, -101377]$ |
\(y^2+y=x^3-x^2-4033x-101377\) |
134.2.0.? |
$[(608797869/2182, 12535888071565/2182)]$ |
| 202675.w1 |
202675w1 |
202675.w |
202675w |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$5.450214993$ |
$1$ |
|
$0$ |
$85248$ |
$0.512446$ |
$2883584/1675$ |
$0.85286$ |
$2.40004$ |
$[0, -1, 1, 367, 43]$ |
\(y^2+y=x^3-x^2+367x+43\) |
134.2.0.? |
$[(403/7, 20266/7)]$ |
| 202675.x1 |
202675z1 |
202675.x |
202675z |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{20} \cdot 11^{2} \cdot 67^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$10.50369330$ |
$1$ |
|
$0$ |
$170698752$ |
$4.215355$ |
$2302197464086783629848471/36991647981707763671875$ |
$1.03169$ |
$6.04250$ |
$[1, 0, 1, 340153349, 12492477297573]$ |
\(y^2+xy+y=x^3+340153349x+12492477297573\) |
134.2.0.? |
$[(13155439/10, 48245702193/10)]$ |
| 202675.y1 |
202675x1 |
202675.y |
202675x |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{4} \cdot 11^{10} \cdot 67^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$19720800$ |
$3.193081$ |
$-1020329117085025/1350125107$ |
$0.95651$ |
$5.31762$ |
$[1, 0, 1, -53081251, -149028273627]$ |
\(y^2+xy+y=x^3-53081251x-149028273627\) |
134.2.0.? |
$[ ]$ |
| 202675.z1 |
202675y1 |
202675.z |
202675y |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1296000$ |
$1.703999$ |
$-744385/8107$ |
$0.74264$ |
$3.58201$ |
$[1, 0, 1, -16701, -3699577]$ |
\(y^2+xy+y=x^3-16701x-3699577\) |
134.2.0.? |
$[ ]$ |
| 202675.ba1 |
202675ba1 |
202675.ba |
202675ba |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{11} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2948$ |
$2$ |
$0$ |
$3.861100533$ |
$1$ |
|
$0$ |
$820800$ |
$1.496241$ |
$144672215/10790417$ |
$0.85836$ |
$3.37557$ |
$[1, 1, 0, 3870, 1049305]$ |
\(y^2+xy=x^3+x^2+3870x+1049305\) |
2948.2.0.? |
$[(-4511/8, 354787/8)]$ |
| 202675.bb1 |
202675bb1 |
202675.bb |
202675bb |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{4} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$0.987414184$ |
$1$ |
|
$2$ |
$23184$ |
$-0.030974$ |
$-7425/67$ |
$0.67037$ |
$1.87859$ |
$[1, -1, 0, -17, 116]$ |
\(y^2+xy=x^3-x^2-17x+116\) |
134.2.0.? |
$[(4, 8)]$ |
| 202675.bc1 |
202675bc1 |
202675.bc |
202675bc |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{10} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$48.77917858$ |
$1$ |
|
$0$ |
$1275120$ |
$1.972692$ |
$-7425/67$ |
$0.67037$ |
$3.84628$ |
$[1, -1, 0, -51992, -18574209]$ |
\(y^2+xy=x^3-x^2-51992x-18574209\) |
134.2.0.? |
$[(1510131926734176422882/328031237, 58427157855493331494993527454689/328031237)]$ |
| 202675.bd1 |
202675bd1 |
202675.bd |
202675bd |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{10} \cdot 11^{4} \cdot 67^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$8964000$ |
$2.798855$ |
$-1020329117085025/1350125107$ |
$0.95651$ |
$4.93047$ |
$[1, 1, 0, -10967200, 13990908375]$ |
\(y^2+xy=x^3+x^2-10967200x+13990908375\) |
134.2.0.? |
$[ ]$ |
| 202675.be1 |
202675be1 |
202675.be |
202675be |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$5.402768212$ |
$1$ |
|
$0$ |
$165888$ |
$0.605325$ |
$-63088729/1675$ |
$0.74420$ |
$2.65622$ |
$[1, 1, 0, -1025, 12500]$ |
\(y^2+xy=x^3+x^2-1025x+12500\) |
134.2.0.? |
$[(-149/2, 365/2)]$ |
| 202675.bf1 |
202675bg1 |
202675.bf |
202675bg |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{8} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$8.038697472$ |
$1$ |
|
$0$ |
$2737152$ |
$1.701841$ |
$45056/1675$ |
$0.69808$ |
$3.57649$ |
$[0, 1, 1, 11092, 3579219]$ |
\(y^2+y=x^3+x^2+11092x+3579219\) |
134.2.0.? |
$[(-5103/8, 758169/8)]$ |
| 202675.bg1 |
202675bf1 |
202675.bg |
202675bf |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{8} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2217600$ |
$1.736256$ |
$-225280/67$ |
$0.60031$ |
$3.66619$ |
$[0, 1, 1, -55458, -6203631]$ |
\(y^2+y=x^3+x^2-55458x-6203631\) |
134.2.0.? |
$[ ]$ |
| 202675.bh1 |
202675bi1 |
202675.bh |
202675bi |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{10} \cdot 11^{4} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1771200$ |
$1.879045$ |
$334540800/300763$ |
$1.05560$ |
$3.70840$ |
$[0, 0, 1, 75625, -5955469]$ |
\(y^2+y=x^3+75625x-5955469\) |
134.2.0.? |
$[ ]$ |
| 202675.bi1 |
202675bh1 |
202675.bi |
202675bh |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{4} \cdot 11^{10} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3896640$ |
$2.273273$ |
$334540800/300763$ |
$1.05560$ |
$4.09555$ |
$[0, 0, 1, 366025, 63413831]$ |
\(y^2+y=x^3+366025x+63413831\) |
134.2.0.? |
$[ ]$ |
| 202675.bj1 |
202675bj1 |
202675.bj |
202675bj |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{14} \cdot 11^{14} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$25$ |
$5$ |
$0$ |
$92160000$ |
$3.707294$ |
$820488521674059776/5610173838671875$ |
$0.97159$ |
$5.53823$ |
$[0, -1, 1, 58998592, -573649053407]$ |
\(y^2+y=x^3-x^2+58998592x-573649053407\) |
134.2.0.? |
$[ ]$ |
| 202675.bk1 |
202675bk1 |
202675.bk |
202675bk |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{6} \cdot 11^{6} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$819200$ |
$1.328400$ |
$-207474688/67$ |
$0.87656$ |
$3.53497$ |
$[0, -1, 1, -37308, 2786893]$ |
\(y^2+y=x^3-x^2-37308x+2786893\) |
134.2.0.? |
$[ ]$ |
| 202675.bl1 |
202675bl1 |
202675.bl |
202675bl |
$1$ |
$1$ |
\( 5^{2} \cdot 11^{2} \cdot 67 \) |
\( - 5^{2} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$40320$ |
$-0.267410$ |
$-225280/67$ |
$0.60031$ |
$1.69849$ |
$[0, -1, 1, -18, 43]$ |
\(y^2+y=x^3-x^2-18x+43\) |
134.2.0.? |
$[ ]$ |