Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 444 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
20160.a1 20160.a \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $2.174196669$ $[0, 0, 0, -10848, -401672]$ \(y^2=x^3-10848x-401672\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.b.1, 24.24.0-6.a.1.6, $\ldots$ $[(-58, 180)]$
20160.a2 20160.a \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.724732223$ $[0, 0, 0, -2208, 39832]$ \(y^2=x^3-2208x+39832\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.b.1, 24.24.0-6.a.1.14, $\ldots$ $[(14, 108)]$
20160.a3 20160.a \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.449464446$ $[0, 0, 0, -1308, 72592]$ \(y^2=x^3-1308x+72592\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.a.1, 24.24.0-6.a.1.14, $\ldots$ $[(29, 243)]$
20160.a4 20160.a \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $4.348393338$ $[0, 0, 0, 11652, -1850672]$ \(y^2=x^3+11652x-1850672\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.a.1, 24.24.0-6.a.1.6, $\ldots$ $[(317, 5805)]$
20160.b1 20160.b \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -48, -992]$ \(y^2=x^3-48x-992\) 70.2.0.a.1 $[ ]$
20160.c1 20160.c \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1152, -45792]$ \(y^2=x^3+1152x-45792\) 70.2.0.a.1 $[ ]$
20160.d1 20160.d \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.225050929$ $[0, 0, 0, -108, -208]$ \(y^2=x^3-108x-208\) 2.3.0.a.1, 24.6.0.c.1, 210.6.0.?, 280.6.0.?, 840.12.0.? $[(-8, 12)]$
20160.d2 20160.d \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.612525464$ $[0, 0, 0, 372, -1552]$ \(y^2=x^3+372x-1552\) 2.3.0.a.1, 24.6.0.b.1, 280.6.0.?, 420.6.0.?, 840.12.0.? $[(14, 80)]$
20160.e1 20160.e \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z$ $1.583022156$ $[0, 0, 0, -13548, 606832]$ \(y^2=x^3-13548x+606832\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 60.12.0-4.c.1.1, 120.24.0.?, $\ldots$ $[(62, 72), (-82, 1080)]$
20160.e2 20160.e \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z$ $1.583022156$ $[0, 0, 0, -6348, -189488]$ \(y^2=x^3-6348x-189488\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 60.12.0-4.c.1.2, 120.24.0.?, $\ldots$ $[(-46, 72), (98, 360)]$
20160.e3 20160.e \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.583022156$ $[0, 0, 0, -948, 7072]$ \(y^2=x^3-948x+7072\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0-2.a.1.1, 84.12.0.?, 120.24.0.?, $\ldots$ $[(2, 72), (6, 40)]$
20160.e4 20160.e \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z$ $6.332088624$ $[0, 0, 0, 177, 772]$ \(y^2=x^3+177x+772\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 84.12.0.?, 120.24.0.?, $\ldots$ $[(32, 198), (96, 950)]$
20160.f1 20160.f \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z$ $5.252271566$ $[0, 0, 0, -2988, -60912]$ \(y^2=x^3-2988x-60912\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.y.1, 56.12.0.s.1, $\ldots$ $[(-27, 9), (-32, 44)]$
20160.f2 20160.f \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.313067891$ $[0, 0, 0, -468, 2592]$ \(y^2=x^3-468x+2592\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0.b.1, 56.12.0.b.1, 120.24.0.?, $\ldots$ $[(-3, 63), (4, 28)]$
20160.f3 20160.f \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z$ $5.252271566$ $[0, 0, 0, -423, 3348]$ \(y^2=x^3-423x+3348\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.y.1, 56.12.0.y.1, $\ldots$ $[(16, 26), (48, 306)]$
20160.f4 20160.f \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $2$ $\Z/2\Z$ $5.252271566$ $[0, 0, 0, 1332, 17712]$ \(y^2=x^3+1332x+17712\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.s.1, 56.12.0.y.1, $\ldots$ $[(37, 343), (-3, 117)]$
20160.g1 20160.g \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.580255667$ $[0, 0, 0, -2360748, 1396054928]$ \(y^2=x^3-2360748x+1396054928\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.1, 24.24.0-24.bb.1.10, $\ldots$ $[(898, 504)]$
20160.g2 20160.g \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.160511335$ $[0, 0, 0, -155748, 19252928]$ \(y^2=x^3-155748x+19252928\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.2, 24.24.0-24.a.1.2, $\ldots$ $[(61, 3159)]$
20160.g3 20160.g \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $6.321022671$ $[0, 0, 0, -47703, -3739048]$ \(y^2=x^3-47703x-3739048\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.bb.1.8, 40.24.0-40.bb.1.11, $\ldots$ $[(-439/2, 3341/2)]$
20160.g4 20160.g \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $6.321022671$ $[0, 0, 0, 320532, 113937392]$ \(y^2=x^3+320532x+113937392\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 12.12.0-4.c.1.2, 24.24.0-24.v.1.3, $\ldots$ $[(1237, 49023)]$
20160.h1 20160.h \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $4.371277692$ $[0, 0, 0, -17988, -69088]$ \(y^2=x^3-17988x-69088\) 2.3.0.a.1, 42.6.0.a.1, 60.6.0.b.1, 140.6.0.?, 420.12.0.? $[(-11, 357)]$
20160.h2 20160.h \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $8.742555385$ $[0, 0, 0, -12843, -558892]$ \(y^2=x^3-12843x-558892\) 2.3.0.a.1, 60.6.0.a.1, 84.6.0.?, 140.6.0.?, 420.12.0.? $[(-13039/14, 90049/14)]$
20160.i1 20160.i \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -215148, -38410832]$ \(y^2=x^3-215148x-38410832\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.bb.1.2, $\ldots$ $[ ]$
20160.i2 20160.i \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -13548, -590672]$ \(y^2=x^3-13548x-590672\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.a.1.3, 140.12.0.?, $\ldots$ $[ ]$
20160.i3 20160.i \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2028, 22192]$ \(y^2=x^3-2028x+22192\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.bb.1.16, 210.6.0.?, $\ldots$ $[ ]$
20160.i4 20160.i \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 3732, -1993808]$ \(y^2=x^3+3732x-1993808\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.1, 24.24.0-24.v.1.4, $\ldots$ $[ ]$
20160.j1 20160.j \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -104268, -12957712]$ \(y^2=x^3-104268x-12957712\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 60.12.0.h.1, 120.24.0.?, $\ldots$ $[ ]$
20160.j2 20160.j \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -7068, -166192]$ \(y^2=x^3-7068x-166192\) 2.6.0.a.1, 8.12.0-2.a.1.1, 60.12.0.a.1, 84.12.0.?, 120.24.0.?, $\ldots$ $[ ]$
20160.j3 20160.j \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2568, 48008]$ \(y^2=x^3-2568x+48008\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 42.6.0.a.1, 84.12.0.?, $\ldots$ $[ ]$
20160.j4 20160.j \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 18132, -1083472]$ \(y^2=x^3+18132x-1083472\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 70.6.0.a.1, 120.24.0.?, $\ldots$ $[ ]$
20160.k1 20160.k \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.251492912$ $[0, 0, 0, -948, -11072]$ \(y^2=x^3-948x-11072\) 2.3.0.a.1, 20.6.0.b.1, 42.6.0.a.1, 420.12.0.? $[(-19, 9)]$
20160.k2 20160.k \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $2.502985825$ $[0, 0, 0, -3, -488]$ \(y^2=x^3-3x-488\) 2.3.0.a.1, 20.6.0.a.1, 84.6.0.?, 420.12.0.? $[(92, 882)]$
20160.l1 20160.l \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $1.809676397$ $[0, 0, 0, -348, -1328]$ \(y^2=x^3-348x-1328\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.d.1, 42.6.0.a.1, 84.12.0.? $[(21, 25)]$
20160.l2 20160.l \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.904838198$ $[0, 0, 0, 72, -152]$ \(y^2=x^3+72x-152\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.d.1, 84.12.0.? $[(9, 35)]$
20160.m1 20160.m \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -11448, 460728]$ \(y^2=x^3-11448x+460728\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.d.1, 42.6.0.a.1, 84.12.0.? $[ ]$
20160.m2 20160.m \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 2052, 1481328]$ \(y^2=x^3+2052x+1481328\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.d.1, 84.12.0.? $[ ]$
20160.n1 20160.n \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -138, 758]$ \(y^2=x^3-138x+758\) 70.2.0.a.1 $[ ]$
20160.o1 20160.o \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\mathsf{trivial}$ $9.478427401$ $[0, 0, 0, -678, -6802]$ \(y^2=x^3-678x-6802\) 70.2.0.a.1 $[(8729/17, 81407/17)]$
20160.p1 20160.p \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 67302, 6593022]$ \(y^2=x^3+67302x+6593022\) 70.2.0.a.1 $[ ]$
20160.q1 20160.q \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -7294188, -7361249488]$ \(y^2=x^3-7294188x-7361249488\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 24.24.0-24.z.1.10, 28.12.0.h.1, $\ldots$ $[ ]$
20160.q2 20160.q \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -1120188, 296980112]$ \(y^2=x^3-1120188x+296980112\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0.b.1, 24.24.0-12.b.1.2, 28.12.0.a.1, $\ldots$ $[ ]$
20160.q3 20160.q \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1007688, 389275112]$ \(y^2=x^3-1007688x+389275112\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.z.1.14, 42.6.0.a.1, $\ldots$ $[ ]$
20160.q4 20160.q \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 3253812, 2048329712]$ \(y^2=x^3+3253812x+2048329712\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.3, 12.12.0.g.1, $\ldots$ $[ ]$
20160.r1 20160.r \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $0.688654939$ $[0, 0, 0, -23628, 1395088]$ \(y^2=x^3-23628x+1395088\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 56.12.0.bb.1, $\ldots$ $[(98, 144)]$
20160.r2 20160.r \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.377309879$ $[0, 0, 0, -2028, 4048]$ \(y^2=x^3-2028x+4048\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 56.12.0.a.1, 120.24.0.?, $\ldots$ $[(98, 864)]$
20160.r3 20160.r \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $2.754619758$ $[0, 0, 0, -1308, -18128]$ \(y^2=x^3-1308x-18128\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 56.12.0.bb.1, $\ldots$ $[(42, 32)]$
20160.r4 20160.r \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $1$ $\Z/2\Z$ $2.754619758$ $[0, 0, 0, 8052, 32272]$ \(y^2=x^3+8052x+32272\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 56.12.0.v.1, $\ldots$ $[(77, 1053)]$
20160.s1 20160.s \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -60588, 5733072]$ \(y^2=x^3-60588x+5733072\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.2, 24.48.0-24.cc.1.11, $\ldots$ $[ ]$
20160.s2 20160.s \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -43308, 9071568]$ \(y^2=x^3-43308x+9071568\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.10, 24.48.0-24.cb.1.9, $\ldots$ $[ ]$
20160.s3 20160.s \( 2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -2988, -55088]$ \(y^2=x^3-2988x-55088\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.8, 24.48.0-24.cc.1.9, $\ldots$ $[ ]$
Next   displayed columns for results