Learn more

Refine search


Results (1-50 of 143 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
198550.a1 198550.a \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -34309531942, -2834476013502284]$ \(y^2+xy=x^3-x^2-34309531942x-2834476013502284\) 152.2.0.? $[ ]$
198550.b1 198550.b \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 93088174, -249890227452]$ \(y^2+xy+y=x^3+93088174x-249890227452\) 1672.2.0.? $[ ]$
198550.c1 198550.c \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -389821526, 2960919185448]$ \(y^2+xy+y=x^3-389821526x+2960919185448\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 10.6.0.a.1, 30.24.0.a.1, $\ldots$ $[ ]$
198550.c2 198550.c \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -28821526, 28155185448]$ \(y^2+xy+y=x^3-28821526x+28155185448\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.c.1, 60.24.0.q.1, $\ldots$ $[ ]$
198550.c3 198550.c \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -15148651, -17925652302]$ \(y^2+xy+y=x^3-15148651x-17925652302\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 10.6.0.a.1, 30.24.0.a.1, $\ldots$ $[ ]$
198550.c4 198550.c \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -14246151, -20696327302]$ \(y^2+xy+y=x^3-14246151x-20696327302\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 20.6.0.c.1, 60.24.0.q.1, $\ldots$ $[ ]$
198550.d1 198550.d \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1854826, 972643548]$ \(y^2+xy+y=x^3-1854826x+972643548\) 88.2.0.? $[ ]$
198550.e1 198550.e \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -952326, -357641452]$ \(y^2+xy+y=x^3-952326x-357641452\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.d.1, 220.12.0.? $[ ]$
198550.e2 198550.e \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -49826, -7471452]$ \(y^2+xy+y=x^3-49826x-7471452\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.d.1, 110.6.0.?, 220.12.0.? $[ ]$
198550.f1 198550.f \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $17.31181500$ $[1, 0, 1, -185775301, 974264635248]$ \(y^2+xy+y=x^3-185775301x+974264635248\) 3.4.0.a.1, 44.2.0.a.1, 132.8.0.?, 285.8.0.?, 12540.16.0.? $[(2358341483/541, 2965412863182/541)]$
198550.f2 198550.f \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.770605002$ $[1, 0, 1, -6583926, -4837037752]$ \(y^2+xy+y=x^3-6583926x-4837037752\) 3.4.0.a.1, 44.2.0.a.1, 132.8.0.?, 285.8.0.?, 12540.16.0.? $[(3093, 64717)]$
198550.g1 198550.g \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $2.059707530$ $[1, 0, 1, -126776, 17363448]$ \(y^2+xy+y=x^3-126776x+17363448\) 2.3.0.a.1, 88.6.0.?, 152.6.0.?, 836.6.0.?, 1672.12.0.? $[(212, 56)]$
198550.g2 198550.g \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.029853765$ $[1, 0, 1, -8026, 263448]$ \(y^2+xy+y=x^3-8026x+263448\) 2.3.0.a.1, 88.6.0.?, 152.6.0.?, 418.6.0.?, 1672.12.0.? $[(22, 301)]$
198550.h1 198550.h \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.852436545$ $[1, 0, 1, -67876, 4387398]$ \(y^2+xy+y=x^3-67876x+4387398\) 44.2.0.a.1 $[(391, 5941)]$
198550.i1 198550.i \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -8311, 336978]$ \(y^2+xy+y=x^3-8311x+336978\) 3.4.0.a.1, 88.2.0.?, 264.8.0.?, 285.8.0.?, 25080.16.0.? $[ ]$
198550.i2 198550.i \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 714, -2362]$ \(y^2+xy+y=x^3+714x-2362\) 3.4.0.a.1, 88.2.0.?, 264.8.0.?, 285.8.0.?, 25080.16.0.? $[ ]$
198550.j1 198550.j \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.714929706$ $[1, 0, 1, -11177651, 8859645198]$ \(y^2+xy+y=x^3-11177651x+8859645198\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 120.24.0.?, $\ldots$ $[(664447/9, 496344824/9)]$
198550.j2 198550.j \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $1.904976568$ $[1, 0, 1, -4724776, -3952786302]$ \(y^2+xy+y=x^3-4724776x-3952786302\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.d.1, 120.24.0.?, $\ldots$ $[(8067, 690891)]$
198550.j3 198550.j \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $3.809953137$ $[1, 0, 1, -4273526, -4737961302]$ \(y^2+xy+y=x^3-4273526x-4737961302\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 120.24.0.?, $\ldots$ $[(5046, 317142)]$
198550.j4 198550.j \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $11.42985941$ $[1, 0, 1, 33947349, 62377895198]$ \(y^2+xy+y=x^3+33947349x+62377895198\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 40.6.0.a.1, 120.24.0.?, $\ldots$ $[(2172771/26, 7923744167/26)]$
198550.k1 198550.k \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.323816207$ $[1, 1, 0, 50, 350]$ \(y^2+xy=x^3+x^2+50x+350\) 8.2.0.a.1 $[(5, 25)]$
198550.l1 198550.l \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.727513522$ $[1, 1, 0, -1302495, -584742035]$ \(y^2+xy=x^3+x^2-1302495x-584742035\) 3.4.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.1, 24.8.0.a.1, 120.16.0.? $[(8559/2, 632983/2)]$
198550.l2 198550.l \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.909171174$ $[1, 1, 0, 69305, -3373195]$ \(y^2+xy=x^3+x^2+69305x-3373195\) 3.4.0.a.1, 8.2.0.a.1, 15.8.0-3.a.1.2, 24.8.0.a.1, 120.16.0.? $[(239/2, 7703/2)]$
198550.m1 198550.m \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $3.824045442$ $[1, 1, 0, -428875, -624971875]$ \(y^2+xy=x^3+x^2-428875x-624971875\) 152.2.0.? $[(25705, 4107060)]$
198550.n1 198550.n \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.531074469$ $[1, 1, 0, -90200, 10609000]$ \(y^2+xy=x^3+x^2-90200x+10609000\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.2, 456.16.0.? $[(10719/7, 369104/7)]$
198550.n2 198550.n \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.843691489$ $[1, 1, 0, 4800, 64000]$ \(y^2+xy=x^3+x^2+4800x+64000\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 57.8.0-3.a.1.1, 456.16.0.? $[(135, 1720)]$
198550.o1 198550.o \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $5.791258156$ $[1, 1, 0, 446550, -282157250]$ \(y^2+xy=x^3+x^2+446550x-282157250\) 8.2.0.a.1 $[(54661, 12753333)]$
198550.p1 198550.p \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.727252765$ $[1, -1, 0, -8342, 291316]$ \(y^2+xy=x^3-x^2-8342x+291316\) 44.2.0.a.1 $[(60, 34), (412/3, 1046/3)]$
198550.q1 198550.q \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $96.78184720$ $[1, -1, 0, -7534965167, -251748410642259]$ \(y^2+xy=x^3-x^2-7534965167x-251748410642259\) 7.8.0.a.1, 35.16.0-7.a.1.2, 44.2.0.a.1, 133.24.0.?, 308.16.0.?, $\ldots$ $[(262718, 125970273), (-365076524095/2699, 492561273036206/2699)]$
198550.q2 198550.q \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $1.975139738$ $[1, -1, 0, -8927417, 7586812241]$ \(y^2+xy=x^3-x^2-8927417x+7586812241\) 7.8.0.a.1, 35.16.0-7.a.1.1, 44.2.0.a.1, 133.24.0.?, 308.16.0.?, $\ldots$ $[(10018, 955973), (-1895, 133976)]$
198550.r1 198550.r \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.253168862$ $[1, -1, 0, -1671317, 519370841]$ \(y^2+xy=x^3-x^2-1671317x+519370841\) 2.3.0.a.1, 44.6.0.a.1, 380.6.0.?, 4180.12.0.? $[(1145, 9716), (1114, 5693)]$
198550.r2 198550.r \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z$ $7.253168862$ $[1, -1, 0, 314183, 56749341]$ \(y^2+xy=x^3-x^2+314183x+56749341\) 2.3.0.a.1, 44.6.0.b.1, 190.6.0.?, 4180.12.0.? $[(309, 13383), (12779/5, 2308957/5)]$
198550.s1 198550.s \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z$ $124.5734351$ $[1, -1, 0, -48934129292, -4166435191470384]$ \(y^2+xy=x^3-x^2-48934129292x-4166435191470384\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 44.12.0.h.1, 152.12.0.?, $\ldots$ $[(630824, 464435988), (21196879501/237, 2345483864896319/237)]$
198550.s2 198550.s \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z$ $31.14335879$ $[1, -1, 0, -4505137292, 2577802257616]$ \(y^2+xy=x^3-x^2-4505137292x+2577802257616\) 2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 76.12.0.?, $\ldots$ $[(-2712, 3845284), (-60869/3, 154576741/3)]$
198550.s3 198550.s \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $124.5734351$ $[1, -1, 0, -3061137292, -64976849742384]$ \(y^2+xy=x^3-x^2-3061137292x-64976849742384\) 2.6.0.a.1, 20.12.0.b.1, 44.12.0.a.1, 76.12.0.?, 220.24.0.?, $\ldots$ $[(344709, 199426083), (265108984/41, 3998395342628/41)]$
198550.s4 198550.s \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\Z/2\Z$ $124.5734351$ $[1, -1, 0, -103825292, -1947659086384]$ \(y^2+xy=x^3-x^2-103825292x-1947659086384\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 76.12.0.?, 88.12.0.?, $\ldots$ $[(17029, 1097048), (43050098997229/22276, 279602574800769899273/22276)]$
198550.t1 198550.t \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -211854542, -1186821081884]$ \(y^2+xy=x^3-x^2-211854542x-1186821081884\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 44.12.0.h.1, 152.12.0.?, $\ldots$ $[ ]$
198550.t2 198550.t \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -13304542, -18354331884]$ \(y^2+xy=x^3-x^2-13304542x-18354331884\) 2.6.0.a.1, 20.12.0-2.a.1.1, 44.12.0.a.1, 76.12.0.?, 220.24.0.?, $\ldots$ $[ ]$
198550.t3 198550.t \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1752542, 463876116]$ \(y^2+xy=x^3-x^2-1752542x+463876116\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 88.12.0.?, 152.12.0.?, $\ldots$ $[ ]$
198550.t4 198550.t \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 413458, -54391517884]$ \(y^2+xy=x^3-x^2+413458x-54391517884\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 38.6.0.b.1, 76.12.0.?, $\ldots$ $[ ]$
198550.u1 198550.u \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $5.659440344$ $[1, -1, 0, -459482492, 3788539508416]$ \(y^2+xy=x^3-x^2-459482492x+3788539508416\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? $[(13644, 236428)]$
198550.u2 198550.u \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\Z/2\Z$ $11.31888068$ $[1, -1, 0, -22672492, 84827518416]$ \(y^2+xy=x^3-x^2-22672492x+84827518416\) 2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.? $[(12392/7, 96430412/7)]$
198550.v1 198550.v \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $20.58654489$ $[1, -1, 0, -182192, -35080034]$ \(y^2+xy=x^3-x^2-182192x-35080034\) 88.2.0.? $[(848651109/305, 24564495402038/305)]$
198550.w1 198550.w \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -620432537, 5942609471021]$ \(y^2+xy=x^3-x^2-620432537x+5942609471021\) 2.3.0.a.1, 10.6.0.a.1, 76.6.0.?, 380.12.0.? $[ ]$
198550.w2 198550.w \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -28970137, 140954789421]$ \(y^2+xy=x^3-x^2-28970137x+140954789421\) 2.3.0.a.1, 20.6.0.c.1, 76.6.0.?, 190.6.0.?, 380.12.0.? $[ ]$
198550.x1 198550.x \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 1918, 9166]$ \(y^2+xy=x^3-x^2+1918x+9166\) 1672.2.0.? $[ ]$
198550.y1 198550.y \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $2$ $\mathsf{trivial}$ $4.239320015$ $[1, -1, 0, 7333, 216741]$ \(y^2+xy=x^3-x^2+7333x+216741\) 88.2.0.? $[(119, 1603), (5, 501)]$
198550.z1 198550.z \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.428467196$ $[1, 0, 1, -798901, -277535552]$ \(y^2+xy+y=x^3-798901x-277535552\) 3.4.0.a.1, 285.8.0.?, 440.2.0.?, 1320.8.0.?, 5016.8.0.?, $\ldots$ $[(2582, 120671)]$
198550.z2 198550.z \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $13.28540159$ $[1, 0, 1, 2675724, -1438060302]$ \(y^2+xy+y=x^3+2675724x-1438060302\) 3.4.0.a.1, 285.8.0.?, 440.2.0.?, 1320.8.0.?, 5016.8.0.?, $\ldots$ $[(6812527/54, 20685762539/54)]$
198550.ba1 198550.ba \( 2 \cdot 5^{2} \cdot 11 \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $14.21702029$ $[1, 0, 1, -85805376, 1230884517648]$ \(y^2+xy+y=x^3-85805376x+1230884517648\) 8360.2.0.? $[(113680956/41, 1200760709776/41)]$
Next   displayed columns for results