| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 19855.a1 |
19855c3 |
19855.a |
19855c |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5^{4} \cdot 11 \cdot 19^{18} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1672$ |
$48$ |
$0$ |
$13.23829366$ |
$1$ |
|
$0$ |
$6359040$ |
$3.881191$ |
$116256292809537371612841/15216540068579856875$ |
$1.02754$ |
$7.15190$ |
$[1, -1, 1, -367060897, 2381187629246]$ |
\(y^2+xy+y=x^3-x^2-367060897x+2381187629246\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 44.12.0.h.1, 76.12.0.?, $\ldots$ |
$[(1723771/9, 1487547161/9)]$ |
| 19855.a2 |
19855c2 |
19855.a |
19855c |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5^{8} \cdot 11^{2} \cdot 19^{12} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$836$ |
$48$ |
$0$ |
$6.619146833$ |
$1$ |
|
$4$ |
$3179520$ |
$3.534618$ |
$104859453317683374662841/2223652969140625$ |
$1.04825$ |
$7.14147$ |
$[1, -1, 1, -354651522, 2570738350496]$ |
\(y^2+xy+y=x^3-x^2-354651522x+2570738350496\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 44.24.0-44.a.1.3, 76.24.0.?, 836.48.0.? |
$[(21036, 2091544)]$ |
| 19855.a3 |
19855c1 |
19855.a |
19855c |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5^{4} \cdot 11 \cdot 19^{9} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1672$ |
$48$ |
$0$ |
$13.23829366$ |
$1$ |
|
$3$ |
$1589760$ |
$3.188042$ |
$104857852278310619039721/47155625$ |
$1.04825$ |
$7.14147$ |
$[1, -1, 1, -354649717, 2570765825484]$ |
\(y^2+xy+y=x^3-x^2-354649717x+2570765825484\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 88.24.0.?, 152.24.0.?, 418.6.0.?, $\ldots$ |
$[(15711418/37, 5281749323/37)]$ |
| 19855.a4 |
19855c4 |
19855.a |
19855c |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( - 5^{16} \cdot 11^{4} \cdot 19^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1672$ |
$48$ |
$0$ |
$3.309573416$ |
$1$ |
|
$4$ |
$6359040$ |
$3.881191$ |
$-94256762600623910012361/15323275604248046875$ |
$1.02668$ |
$7.15572$ |
$[1, -1, 1, -342271027, 2758530650854]$ |
\(y^2+xy+y=x^3-x^2-342271027x+2758530650854\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 38.6.0.b.1, 76.24.0.?, 88.24.0.?, $\ldots$ |
$[(-10388, 2284006)]$ |
| 19855.b1 |
19855b3 |
19855.b |
19855b |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5^{4} \cdot 11 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8360$ |
$48$ |
$0$ |
$1.958038950$ |
$1$ |
|
$4$ |
$27648$ |
$1.186554$ |
$22930509321/6875$ |
$1.07717$ |
$4.19578$ |
$[1, -1, 1, -21367, -1196484]$ |
\(y^2+xy+y=x^3-x^2-21367x-1196484\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 44.12.0.h.1, 76.12.0.?, $\ldots$ |
$[(-84, 59)]$ |
| 19855.b2 |
19855b4 |
19855.b |
19855b |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5 \cdot 11^{4} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8360$ |
$48$ |
$0$ |
$1.958038950$ |
$1$ |
|
$2$ |
$27648$ |
$1.186554$ |
$2749884201/73205$ |
$0.94591$ |
$3.98147$ |
$[1, -1, 1, -10537, 409244]$ |
\(y^2+xy+y=x^3-x^2-10537x+409244\) |
2.3.0.a.1, 4.6.0.c.1, 10.6.0.a.1, 20.12.0.g.1, 76.12.0.?, $\ldots$ |
$[(-52, 928)]$ |
| 19855.b3 |
19855b2 |
19855.b |
19855b |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5^{2} \cdot 11^{2} \cdot 19^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4180$ |
$48$ |
$0$ |
$3.916077901$ |
$1$ |
|
$4$ |
$13824$ |
$0.839980$ |
$8120601/3025$ |
$1.05560$ |
$3.39287$ |
$[1, -1, 1, -1512, -13126]$ |
\(y^2+xy+y=x^3-x^2-1512x-13126\) |
2.6.0.a.1, 20.12.0.b.1, 44.12.0.a.1, 76.12.0.?, 220.24.0.?, $\ldots$ |
$[(92, 741)]$ |
| 19855.b4 |
19855b1 |
19855.b |
19855b |
$4$ |
$4$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( - 5 \cdot 11 \cdot 19^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8360$ |
$48$ |
$0$ |
$7.832155802$ |
$1$ |
|
$1$ |
$6912$ |
$0.493407$ |
$59319/55$ |
$0.79207$ |
$2.89579$ |
$[1, -1, 1, 293, -1574]$ |
\(y^2+xy+y=x^3-x^2+293x-1574\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.z.1, 88.12.0.?, 110.6.0.?, $\ldots$ |
$[(1630/9, 72748/9)]$ |
| 19855.c1 |
19855a2 |
19855.c |
19855a |
$2$ |
$2$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5 \cdot 11^{2} \cdot 19^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4180$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$46080$ |
$1.246176$ |
$3301293169/218405$ |
$0.81334$ |
$3.99994$ |
$[1, 1, 0, -11198, -433933]$ |
\(y^2+xy=x^3+x^2-11198x-433933\) |
2.3.0.a.1, 10.6.0.a.1, 836.6.0.?, 4180.12.0.? |
$[ ]$ |
| 19855.c2 |
19855a1 |
19855.c |
19855a |
$2$ |
$2$ |
\( 5 \cdot 11 \cdot 19^{2} \) |
\( 5^{2} \cdot 11 \cdot 19^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4180$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$23040$ |
$0.899602$ |
$24137569/5225$ |
$0.98391$ |
$3.50295$ |
$[1, 1, 0, -2173, 29952]$ |
\(y^2+xy=x^3+x^2-2173x+29952\) |
2.3.0.a.1, 20.6.0.c.1, 418.6.0.?, 4180.12.0.? |
$[ ]$ |