Learn more

Refine search


Results (1-50 of 352 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
198450.a1 198450.a \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -24411417, 45610124741]$ \(y^2+xy=x^3-x^2-24411417x+45610124741\) 3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? $[ ]$
198450.a2 198450.a \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2802417, -1778412259]$ \(y^2+xy=x^3-x^2-2802417x-1778412259\) 3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? $[ ]$
198450.b1 198450.b \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4268742, -1197979084]$ \(y^2+xy=x^3-x^2-4268742x-1197979084\) 3.8.0-3.a.1.1, 8.2.0.b.1, 24.16.0-24.b.1.4 $[ ]$
198450.b2 198450.b \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\Z/3\Z$ $1$ $[1, -1, 0, -2339367, 1377736541]$ \(y^2+xy=x^3-x^2-2339367x+1377736541\) 3.8.0-3.a.1.2, 8.2.0.b.1, 24.16.0-24.b.1.8 $[ ]$
198450.c1 198450.c \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -90267, -27024859]$ \(y^2+xy=x^3-x^2-90267x-27024859\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 105.8.0.?, 120.16.0.?, $\ldots$ $[ ]$
198450.c2 198450.c \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 791733, 631829141]$ \(y^2+xy=x^3-x^2+791733x+631829141\) 3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 105.8.0.?, 120.16.0.?, $\ldots$ $[ ]$
198450.d1 198450.d \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -8682, 301706]$ \(y^2+xy=x^3-x^2-8682x+301706\) 3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? $[ ]$
198450.d2 198450.d \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1332, -18264]$ \(y^2+xy=x^3-x^2-1332x-18264\) 3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? $[ ]$
198450.e1 198450.e \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.636461511$ $[1, -1, 0, -87117, 3517541]$ \(y^2+xy=x^3-x^2-87117x+3517541\) 3.4.0.a.1, 8.2.0.b.1, 21.8.0-3.a.1.2, 24.8.0.b.1, 168.16.0.? $[(-31, 2503)]$
198450.e2 198450.e \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $10.90938453$ $[1, -1, 0, -47742, -4003084]$ \(y^2+xy=x^3-x^2-47742x-4003084\) 3.4.0.a.1, 8.2.0.b.1, 21.8.0-3.a.1.1, 24.8.0.b.1, 168.16.0.? $[(-328925/51, 8803796/51)]$
198450.f1 198450.f \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.310238797$ $[1, -1, 0, -398967, 97072541]$ \(y^2+xy=x^3-x^2-398967x+97072541\) 3.4.0.a.1, 12.8.0-3.a.1.4, 21.8.0-3.a.1.2, 28.2.0.a.1, 84.16.0.? $[(310, 1609), (814, 17233)]$
198450.f2 198450.f \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $2.792149181$ $[1, -1, 0, -13092, -399484]$ \(y^2+xy=x^3-x^2-13092x-399484\) 3.4.0.a.1, 12.8.0-3.a.1.3, 21.8.0-3.a.1.1, 28.2.0.a.1, 84.16.0.? $[(-82, 384), (128, 34)]$
198450.g1 198450.g \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $14.78981852$ $[1, -1, 0, -498192, -132831784]$ \(y^2+xy=x^3-x^2-498192x-132831784\) 3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.1, 24.8.0.b.1, 120.16.0.? $[(-3569305/89, 88968491/89)]$
198450.g2 198450.g \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $4.929939507$ $[1, -1, 0, -57192, 5201216]$ \(y^2+xy=x^3-x^2-57192x+5201216\) 3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.2, 24.8.0.b.1, 120.16.0.? $[(95, 739)]$
198450.h1 198450.h \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $7.356164571$ $[1, -1, 0, -16230867, -27291232459]$ \(y^2+xy=x^3-x^2-16230867x-27291232459\) 14.2.0.a.1 $[(603494, 468511053)]$
198450.i1 198450.i \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $5.736772503$ $[1, -1, 0, -8932317, -10285037659]$ \(y^2+xy=x^3-x^2-8932317x-10285037659\) 8.2.0.a.1 $[(45229, 9574648)]$
198450.j1 198450.j \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -12206742, -20111587084]$ \(y^2+xy=x^3-x^2-12206742x-20111587084\) 70.2.0.a.1 $[ ]$
198450.k1 198450.k \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.502837955$ $[1, -1, 0, -331242, 79660916]$ \(y^2+xy=x^3-x^2-331242x+79660916\) 14.2.0.a.1 $[(388, 2878)]$
198450.l1 198450.l \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -4963317, 4253740091]$ \(y^2+xy=x^3-x^2-4963317x+4253740091\) 8.2.0.b.1 $[ ]$
198450.m1 198450.m \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -398967, 111890141]$ \(y^2+xy=x^3-x^2-398967x+111890141\) 8.2.0.a.1 $[ ]$
198450.n1 198450.n \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.941344695$ $[1, -1, 0, -101292, -12372634]$ \(y^2+xy=x^3-x^2-101292x-12372634\) 8.2.0.b.1 $[(-187, 34)]$
198450.o1 198450.o \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $8.942720412$ $[1, -1, 0, -299742, -261295084]$ \(y^2+xy=x^3-x^2-299742x-261295084\) 40.2.0.a.1 $[(363229/4, 218116417/4)]$
198450.p1 198450.p \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $6.008264003$ $[1, -1, 0, -719482542, 7439886396116]$ \(y^2+xy=x^3-x^2-719482542x+7439886396116\) 3.4.0.a.1, 6.8.0-3.a.1.2, 70.2.0.a.1, 105.8.0.?, 210.16.0.? $[(18764, 729418)]$
198450.p2 198450.p \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.002754667$ $[1, -1, 0, 14341458, 49770684116]$ \(y^2+xy=x^3-x^2+14341458x+49770684116\) 3.4.0.a.1, 6.8.0-3.a.1.1, 70.2.0.a.1, 105.8.0.?, 210.16.0.? $[(10924, 1223338)]$
198450.q1 198450.q \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.520553816$ $[1, -1, 0, 768, 4976]$ \(y^2+xy=x^3-x^2+768x+4976\) 70.2.0.a.1 $[(4, 88), (-5, 34)]$
198450.r1 198450.r \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $11.20562325$ $[1, -1, 0, -564342, -161673184]$ \(y^2+xy=x^3-x^2-564342x-161673184\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 15.8.0-3.a.1.1, 24.16.0.a.2, $\ldots$ $[(-149662/19, 7950606/19)]$
198450.r2 198450.r \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $3.735207751$ $[1, -1, 0, -49842, 4167316]$ \(y^2+xy=x^3-x^2-49842x+4167316\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 15.8.0-3.a.1.2, 24.16.0.a.1, $\ldots$ $[(108, 134)]$
198450.s1 198450.s \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $1.786947289$ $[1, -1, 0, -46167, -7356259]$ \(y^2+xy=x^3-x^2-46167x-7356259\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? $[(289, 1693)]$
198450.s2 198450.s \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $5.360841869$ $[1, -1, 0, 394833, 149198741]$ \(y^2+xy=x^3-x^2+394833x+149198741\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? $[(-2159/3, 175351/3)]$
198450.t1 198450.t \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $9.848911875$ $[1, -1, 0, -4412067, -61854695659]$ \(y^2+xy=x^3-x^2-4412067x-61854695659\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? $[(1376209, 1613766958)]$
198450.t2 198450.t \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $29.54673562$ $[1, -1, 0, 39687933, 1665233604341]$ \(y^2+xy=x^3-x^2+39687933x+1665233604341\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? $[(236422567266841/13107, 3633731416788927675194/13107)]$
198450.u1 198450.u \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.686887948$ $[1, -1, 0, -41757, 3377681]$ \(y^2+xy=x^3-x^2-41757x+3377681\) 3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.2, 42.8.0.a.1, 105.8.0.?, $\ldots$ $[(128, 279), (-215, 1651)]$
198450.u2 198450.u \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $2$ $\mathsf{trivial}$ $0.686887948$ $[1, -1, 0, 2343, 17261]$ \(y^2+xy=x^3-x^2+2343x+17261\) 3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.1, 42.8.0.a.1, 105.8.0.?, $\ldots$ $[(58, 559), (10, 199)]$
198450.v1 198450.v \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.077294642$ $[1, -1, 0, -21912, 1254266]$ \(y^2+xy=x^3-x^2-21912x+1254266\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? $[(65, 286)]$
198450.v2 198450.v \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $0.692431547$ $[1, -1, 0, 138, 6236]$ \(y^2+xy=x^3-x^2+138x+6236\) 3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? $[(-5, 76)]$
198450.w1 198450.w \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -7947, -298299]$ \(y^2+xy=x^3-x^2-7947x-298299\) 3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.1, 42.8.0.a.1, 105.8.0.?, $\ldots$ $[ ]$
198450.w2 198450.w \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 50853, 599381]$ \(y^2+xy=x^3-x^2+50853x+599381\) 3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.2, 42.8.0.a.1, 105.8.0.?, $\ldots$ $[ ]$
198450.x1 198450.x \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $6.036551918$ $[1, -1, 0, -57192, -5250484]$ \(y^2+xy=x^3-x^2-57192x-5250484\) 3.4.0.a.1, 6.8.0-3.a.1.1, 14.2.0.a.1, 21.8.0-3.a.1.1, 42.16.0-42.a.1.2 $[(2902/3, 79976/3)]$
198450.x2 198450.x \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.012183972$ $[1, -1, 0, -2067, -14853259]$ \(y^2+xy=x^3-x^2-2067x-14853259\) 3.4.0.a.1, 6.8.0-3.a.1.2, 14.2.0.a.1, 21.8.0-3.a.1.2, 42.16.0-42.a.1.1 $[(254, 853)]$
198450.y1 198450.y \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $2.995416922$ $[1, -1, 0, -862017, 311927741]$ \(y^2+xy=x^3-x^2-862017x+311927741\) 3.4.0.a.1, 8.2.0.a.1, 21.8.0-3.a.1.2, 24.8.0.a.1, 168.16.0.? $[(569, 2043)]$
198450.y2 198450.y \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $8.986250766$ $[1, -1, 0, 38358, 2138716]$ \(y^2+xy=x^3-x^2+38358x+2138716\) 3.4.0.a.1, 8.2.0.a.1, 21.8.0-3.a.1.1, 24.8.0.a.1, 168.16.0.? $[(9739/15, 6573832/15)]$
198450.z1 198450.z \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $9.044687405$ $[1, -1, 0, -85137117, 1550805217541]$ \(y^2+xy=x^3-x^2-85137117x+1550805217541\) 3.4.0.a.1, 6.8.0-3.a.1.2, 14.2.0.a.1, 21.8.0-3.a.1.2, 42.16.0-42.a.1.1 $[(80406314/41, 710991363363/41)]$
198450.z2 198450.z \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $1$ $\mathsf{trivial}$ $27.13406221$ $[1, -1, 0, 9402258, -55513303084]$ \(y^2+xy=x^3-x^2+9402258x-55513303084\) 3.4.0.a.1, 6.8.0-3.a.1.1, 14.2.0.a.1, 21.8.0-3.a.1.1, 42.16.0-42.a.1.2 $[(15632592646924/54735, 59955939032612738198/54735)]$
198450.ba1 198450.ba \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -11875992, 15755604416]$ \(y^2+xy=x^3-x^2-11875992x+15755604416\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.4, 24.8.0.a.1, $\ldots$ $[ ]$
198450.ba2 198450.ba \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -115992, 30916416]$ \(y^2+xy=x^3-x^2-115992x+30916416\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.1, 24.8.0.a.1, $\ldots$ $[ ]$
198450.ba3 198450.ba \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -5742, -174084]$ \(y^2+xy=x^3-x^2-5742x-174084\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.3, 24.8.0.a.1, $\ldots$ $[ ]$
198450.ba4 198450.ba \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 31008, -333334]$ \(y^2+xy=x^3-x^2+31008x-333334\) 3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.2, 24.8.0.a.1, $\ldots$ $[ ]$
198450.bb1 198450.bb \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -11517, 474641]$ \(y^2+xy=x^3-x^2-11517x+474641\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 24.16.0.a.2, 105.8.0.?, $\ldots$ $[ ]$
198450.bb2 198450.bb \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1017, -11859]$ \(y^2+xy=x^3-x^2-1017x-11859\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 24.16.0.a.1, 105.8.0.?, $\ldots$ $[ ]$
198450.bc1 198450.bc \( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 37623, -1782019]$ \(y^2+xy=x^3-x^2+37623x-1782019\) 70.2.0.a.1 $[ ]$
Next   displayed columns for results