| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
| 198450.a1 |
198450gj2 |
198450.a |
198450gj |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 3^{10} \cdot 5^{12} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31352832$ |
$3.110863$ |
$6172906761/125000$ |
$0.96946$ |
$5.13558$ |
$[1, -1, 0, -24411417, 45610124741]$ |
\(y^2+xy=x^3-x^2-24411417x+45610124741\) |
3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? |
$[ ]$ |
| 198450.a2 |
198450gj1 |
198450.a |
198450gj |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{6} \cdot 5^{8} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10450944$ |
$2.561558$ |
$756474201/12800$ |
$0.96469$ |
$4.60323$ |
$[1, -1, 0, -2802417, -1778412259]$ |
\(y^2+xy=x^3-x^2-2802417x-1778412259\) |
3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? |
$[ ]$ |
| 198450.b1 |
198450gh2 |
198450.b |
198450gh |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{10} \cdot 5^{8} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.8.0.2 |
3B.1.2 |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$16329600$ |
$2.844696$ |
$64694385/32768$ |
$0.96990$ |
$4.70673$ |
$[1, -1, 0, -4268742, -1197979084]$ |
\(y^2+xy=x^3-x^2-4268742x-1197979084\) |
3.8.0-3.a.1.1, 8.2.0.b.1, 24.16.0-24.b.1.4 |
$[ ]$ |
| 198450.b2 |
198450gh1 |
198450.b |
198450gh |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{5} \cdot 3^{6} \cdot 5^{8} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.8.0.1 |
3B.1.1 |
$24$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$5443200$ |
$2.295387$ |
$862475985/32$ |
$0.95932$ |
$4.55882$ |
$[1, -1, 0, -2339367, 1377736541]$ |
\(y^2+xy=x^3-x^2-2339367x+1377736541\) |
3.8.0-3.a.1.2, 8.2.0.b.1, 24.16.0-24.b.1.8 |
$[ ]$ |
| 198450.c1 |
198450gk1 |
198450.c |
198450gk |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{6} \cdot 5^{6} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$840$ |
$32$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2985984$ |
$2.030727$ |
$-60698457/200704$ |
$1.01233$ |
$3.91443$ |
$[1, -1, 0, -90267, -27024859]$ |
\(y^2+xy=x^3-x^2-90267x-27024859\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 105.8.0.?, 120.16.0.?, $\ldots$ |
$[ ]$ |
| 198450.c2 |
198450gk2 |
198450.c |
198450gk |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{6} \cdot 7^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.2.0.1, 3.4.0.1 |
3B |
$840$ |
$32$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8957952$ |
$2.580032$ |
$505636983/1882384$ |
$1.01293$ |
$4.43111$ |
$[1, -1, 0, 791733, 631829141]$ |
\(y^2+xy=x^3-x^2+791733x+631829141\) |
3.4.0.a.1, 4.2.0.a.1, 12.8.0.a.1, 105.8.0.?, 120.16.0.?, $\ldots$ |
$[ ]$ |
| 198450.d1 |
198450gl2 |
198450.d |
198450gl |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 3^{12} \cdot 5^{2} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$489888$ |
$1.161322$ |
$46305/2$ |
$0.87793$ |
$3.18247$ |
$[1, -1, 0, -8682, 301706]$ |
\(y^2+xy=x^3-x^2-8682x+301706\) |
3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? |
$[ ]$ |
| 198450.d2 |
198450gl1 |
198450.d |
198450gl |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 3^{4} \cdot 5^{2} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$163296$ |
$0.612016$ |
$1097505/8$ |
$0.92816$ |
$2.72147$ |
$[1, -1, 0, -1332, -18264]$ |
\(y^2+xy=x^3-x^2-1332x-18264\) |
3.4.0.a.1, 8.2.0.b.1, 24.8.0.b.1, 105.8.0.?, 840.16.0.? |
$[ ]$ |
| 198450.e1 |
198450fh2 |
198450.e |
198450fh |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{15} \cdot 3^{10} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$3.636461511$ |
$1$ |
|
$2$ |
$2332800$ |
$1.871740$ |
$64694385/32768$ |
$0.96990$ |
$3.74959$ |
$[1, -1, 0, -87117, 3517541]$ |
\(y^2+xy=x^3-x^2-87117x+3517541\) |
3.4.0.a.1, 8.2.0.b.1, 21.8.0-3.a.1.2, 24.8.0.b.1, 168.16.0.? |
$[(-31, 2503)]$ |
| 198450.e2 |
198450fh1 |
198450.e |
198450fh |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{5} \cdot 3^{6} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$10.90938453$ |
$1$ |
|
$0$ |
$777600$ |
$1.322433$ |
$862475985/32$ |
$0.95932$ |
$3.60168$ |
$[1, -1, 0, -47742, -4003084]$ |
\(y^2+xy=x^3-x^2-47742x-4003084\) |
3.4.0.a.1, 8.2.0.b.1, 21.8.0-3.a.1.1, 24.8.0.b.1, 168.16.0.? |
$[(-328925/51, 8803796/51)]$ |
| 198450.f1 |
198450eh2 |
198450.f |
198450eh |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{10} \cdot 5^{4} \cdot 7^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$84$ |
$16$ |
$0$ |
$0.310238797$ |
$1$ |
|
$22$ |
$2612736$ |
$1.915684$ |
$1617537825/448$ |
$0.94501$ |
$4.12382$ |
$[1, -1, 0, -398967, 97072541]$ |
\(y^2+xy=x^3-x^2-398967x+97072541\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 21.8.0-3.a.1.2, 28.2.0.a.1, 84.16.0.? |
$[(310, 1609), (814, 17233)]$ |
| 198450.f2 |
198450eh1 |
198450.f |
198450eh |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{6} \cdot 5^{4} \cdot 7^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$84$ |
$16$ |
$0$ |
$2.792149181$ |
$1$ |
|
$8$ |
$870912$ |
$1.366377$ |
$4629825/1372$ |
$0.89878$ |
$3.28349$ |
$[1, -1, 0, -13092, -399484]$ |
\(y^2+xy=x^3-x^2-13092x-399484\) |
3.4.0.a.1, 12.8.0-3.a.1.3, 21.8.0-3.a.1.1, 28.2.0.a.1, 84.16.0.? |
$[(-82, 384), (128, 34)]$ |
| 198450.g1 |
198450ib2 |
198450.g |
198450ib |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 3^{10} \cdot 5^{12} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$14.78981852$ |
$1$ |
|
$0$ |
$4478976$ |
$2.137909$ |
$6172906761/125000$ |
$0.96946$ |
$4.17844$ |
$[1, -1, 0, -498192, -132831784]$ |
\(y^2+xy=x^3-x^2-498192x-132831784\) |
3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.1, 24.8.0.b.1, 120.16.0.? |
$[(-3569305/89, 88968491/89)]$ |
| 198450.g2 |
198450ib1 |
198450.g |
198450ib |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 3^{6} \cdot 5^{8} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$4.929939507$ |
$1$ |
|
$2$ |
$1492992$ |
$1.588602$ |
$756474201/12800$ |
$0.96469$ |
$3.64609$ |
$[1, -1, 0, -57192, 5201216]$ |
\(y^2+xy=x^3-x^2-57192x+5201216\) |
3.4.0.a.1, 8.2.0.b.1, 15.8.0-3.a.1.2, 24.8.0.b.1, 120.16.0.? |
$[(95, 739)]$ |
| 198450.h1 |
198450fi1 |
198450.h |
198450fi |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{22} \cdot 3^{6} \cdot 5^{8} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$7.356164571$ |
$1$ |
|
$2$ |
$21288960$ |
$3.092232$ |
$-41150864295/4194304$ |
$1.01510$ |
$5.04850$ |
$[1, -1, 0, -16230867, -27291232459]$ |
\(y^2+xy=x^3-x^2-16230867x-27291232459\) |
14.2.0.a.1 |
$[(603494, 468511053)]$ |
| 198450.i1 |
198450eq1 |
198450.i |
198450eq |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{10} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$5.736772503$ |
$1$ |
|
$2$ |
$13271040$ |
$2.748280$ |
$-726098113449/980000$ |
$0.95584$ |
$4.88851$ |
$[1, -1, 0, -8932317, -10285037659]$ |
\(y^2+xy=x^3-x^2-8932317x-10285037659\) |
8.2.0.a.1 |
$[(45229, 9574648)]$ |
| 198450.j1 |
198450ei1 |
198450.j |
198450ei |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 3^{10} \cdot 5^{9} \cdot 7^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$19353600$ |
$3.083233$ |
$-14824914669/4302592$ |
$0.96424$ |
$4.99845$ |
$[1, -1, 0, -12206742, -20111587084]$ |
\(y^2+xy=x^3-x^2-12206742x-20111587084\) |
70.2.0.a.1 |
$[ ]$ |
| 198450.k1 |
198450fj1 |
198450.k |
198450fj |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{22} \cdot 3^{6} \cdot 5^{8} \cdot 7^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$14$ |
$2$ |
$0$ |
$1.502837955$ |
$1$ |
|
$4$ |
$3041280$ |
$2.119274$ |
$-41150864295/4194304$ |
$1.01510$ |
$4.09136$ |
$[1, -1, 0, -331242, 79660916]$ |
\(y^2+xy=x^3-x^2-331242x+79660916\) |
14.2.0.a.1 |
$[(388, 2878)]$ |
| 198450.l1 |
198450gm1 |
198450.l |
198450gm |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 3^{10} \cdot 5^{8} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5806080$ |
$2.588993$ |
$51883209/50$ |
$1.18563$ |
$4.74381$ |
$[1, -1, 0, -4963317, 4253740091]$ |
\(y^2+xy=x^3-x^2-4963317x+4253740091\) |
8.2.0.b.1 |
$[ ]$ |
| 198450.m1 |
198450ej1 |
198450.m |
198450ej |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{10} \cdot 5^{4} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3773952$ |
$2.201862$ |
$-1617537825/307328$ |
$0.95239$ |
$4.14709$ |
$[1, -1, 0, -398967, 111890141]$ |
\(y^2+xy=x^3-x^2-398967x+111890141\) |
8.2.0.a.1 |
$[ ]$ |
| 198450.n1 |
198450ic1 |
198450.n |
198450ic |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 3^{10} \cdot 5^{8} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.2 |
|
$8$ |
$2$ |
$0$ |
$2.941344695$ |
$1$ |
|
$2$ |
$829440$ |
$1.616039$ |
$51883209/50$ |
$1.18563$ |
$3.78667$ |
$[1, -1, 0, -101292, -12372634]$ |
\(y^2+xy=x^3-x^2-101292x-12372634\) |
8.2.0.b.1 |
$[(-187, 34)]$ |
| 198450.o1 |
198450fk1 |
198450.o |
198450fk |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 3^{10} \cdot 5^{9} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$8.942720412$ |
$1$ |
|
$0$ |
$5987520$ |
$2.413349$ |
$-219501/2048$ |
$1.34792$ |
$4.28634$ |
$[1, -1, 0, -299742, -261295084]$ |
\(y^2+xy=x^3-x^2-299742x-261295084\) |
40.2.0.a.1 |
$[(363229/4, 218116417/4)]$ |
| 198450.p1 |
198450er2 |
198450.p |
198450er |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{10} \cdot 5^{15} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$6.008264003$ |
$1$ |
|
$2$ |
$111974400$ |
$3.856438$ |
$-379457971152854841/686000000000$ |
$1.02777$ |
$5.96795$ |
$[1, -1, 0, -719482542, 7439886396116]$ |
\(y^2+xy=x^3-x^2-719482542x+7439886396116\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 70.2.0.a.1, 105.8.0.?, 210.16.0.? |
$[(18764, 729418)]$ |
| 198450.p2 |
198450er1 |
198450.p |
198450er |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{6} \cdot 5^{9} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$2.002754667$ |
$1$ |
|
$4$ |
$37324800$ |
$3.307129$ |
$243426478710519/939524096000$ |
$1.03944$ |
$5.14701$ |
$[1, -1, 0, 14341458, 49770684116]$ |
\(y^2+xy=x^3-x^2+14341458x+49770684116\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 70.2.0.a.1, 105.8.0.?, 210.16.0.? |
$[(10924, 1223338)]$ |
| 198450.q1 |
198450ek1 |
198450.q |
198450ek |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{3} \cdot 7^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.520553816$ |
$1$ |
|
$18$ |
$230400$ |
$0.723237$ |
$19773/16$ |
$1.01492$ |
$2.58596$ |
$[1, -1, 0, 768, 4976]$ |
\(y^2+xy=x^3-x^2+768x+4976\) |
70.2.0.a.1 |
$[(4, 88), (-5, 34)]$ |
| 198450.r1 |
198450id2 |
198450.r |
198450id |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 3.4.0.1 |
2Cn, 3B |
$2520$ |
$96$ |
$2$ |
$11.20562325$ |
$1$ |
|
$0$ |
$2939328$ |
$2.136089$ |
$415233/4$ |
$0.91249$ |
$4.20910$ |
$[1, -1, 0, -564342, -161673184]$ |
\(y^2+xy=x^3-x^2-564342x-161673184\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 15.8.0-3.a.1.1, 24.16.0.a.2, $\ldots$ |
$[(-149662/19, 7950606/19)]$ |
| 198450.r2 |
198450id1 |
198450.r |
198450id |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 3.4.0.1 |
2Cn, 3B |
$2520$ |
$96$ |
$2$ |
$3.735207751$ |
$1$ |
|
$2$ |
$979776$ |
$1.586784$ |
$1876833/64$ |
$0.92331$ |
$3.61226$ |
$[1, -1, 0, -49842, 4167316]$ |
\(y^2+xy=x^3-x^2-49842x+4167316\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 15.8.0-3.a.1.2, 24.16.0.a.1, $\ldots$ |
$[(108, 134)]$ |
| 198450.s1 |
198450es1 |
198450.s |
198450es |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{6} \cdot 5^{8} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1.786947289$ |
$1$ |
|
$4$ |
$1492992$ |
$1.806356$ |
$-8120601/12800$ |
$0.99343$ |
$3.70121$ |
$[1, -1, 0, -46167, -7356259]$ |
\(y^2+xy=x^3-x^2-46167x-7356259\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[(289, 1693)]$ |
| 198450.s2 |
198450es2 |
198450.s |
198450es |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{10} \cdot 5^{12} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$5.360841869$ |
$1$ |
|
$0$ |
$4478976$ |
$2.355663$ |
$62710839/125000$ |
$1.00087$ |
$4.19453$ |
$[1, -1, 0, 394833, 149198741]$ |
\(y^2+xy=x^3-x^2+394833x+149198741\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[(-2159/3, 175351/3)]$ |
| 198450.t1 |
198450et1 |
198450.t |
198450et |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 3^{6} \cdot 5^{12} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$9.848911875$ |
$1$ |
|
$2$ |
$39813120$ |
$3.326107$ |
$-7087845946329/1229312000000$ |
$1.08245$ |
$5.18263$ |
$[1, -1, 0, -4412067, -61854695659]$ |
\(y^2+xy=x^3-x^2-4412067x-61854695659\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[(1376209, 1613766958)]$ |
| 198450.t2 |
198450et2 |
198450.t |
198450et |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{5} \cdot 3^{10} \cdot 5^{8} \cdot 7^{18} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$29.54673562$ |
$1$ |
|
$0$ |
$119439360$ |
$3.875412$ |
$63691039238391/11073029760800$ |
$1.07422$ |
$5.72253$ |
$[1, -1, 0, 39687933, 1665233604341]$ |
\(y^2+xy=x^3-x^2+39687933x+1665233604341\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[(236422567266841/13107, 3633731416788927675194/13107)]$ |
| 198450.u1 |
198450gn2 |
198450.u |
198450gn |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{10} \cdot 5^{2} \cdot 7^{9} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$0.686887948$ |
$1$ |
|
$14$ |
$746496$ |
$1.537230$ |
$-46363545/1372$ |
$0.87525$ |
$3.57282$ |
$[1, -1, 0, -41757, 3377681]$ |
\(y^2+xy=x^3-x^2-41757x+3377681\) |
3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.2, 42.8.0.a.1, 105.8.0.?, $\ldots$ |
$[(128, 279), (-215, 1651)]$ |
| 198450.u2 |
198450gn1 |
198450.u |
198450gn |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{6} \cdot 5^{2} \cdot 7^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$0.686887948$ |
$1$ |
|
$14$ |
$248832$ |
$0.987923$ |
$663255/448$ |
$0.87045$ |
$2.86031$ |
$[1, -1, 0, 2343, 17261]$ |
\(y^2+xy=x^3-x^2+2343x+17261\) |
3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.1, 42.8.0.a.1, 105.8.0.?, $\ldots$ |
$[(58, 559), (10, 199)]$ |
| 198450.v1 |
198450eu2 |
198450.v |
198450eu |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{10} \cdot 5^{2} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$2.077294642$ |
$1$ |
|
$2$ |
$466560$ |
$1.192734$ |
$-6699465/2$ |
$0.95676$ |
$3.41019$ |
$[1, -1, 0, -21912, 1254266]$ |
\(y^2+xy=x^3-x^2-21912x+1254266\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[(65, 286)]$ |
| 198450.v2 |
198450eu1 |
198450.v |
198450eu |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{6} \cdot 5^{2} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$0.692431547$ |
$1$ |
|
$4$ |
$155520$ |
$0.643428$ |
$135/8$ |
$1.04562$ |
$2.54219$ |
$[1, -1, 0, 138, 6236]$ |
\(y^2+xy=x^3-x^2+138x+6236\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[(-5, 76)]$ |
| 198450.w1 |
198450go1 |
198450.w |
198450go |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{12} \cdot 3^{4} \cdot 5^{2} \cdot 7^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$497664$ |
$1.197395$ |
$-232997265/28672$ |
$0.90229$ |
$3.17652$ |
$[1, -1, 0, -7947, -298299]$ |
\(y^2+xy=x^3-x^2-7947x-298299\) |
3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.1, 42.8.0.a.1, 105.8.0.?, $\ldots$ |
$[ ]$ |
| 198450.w2 |
198450go2 |
198450.w |
198450go |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{12} \cdot 5^{2} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$210$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1492992$ |
$1.746702$ |
$9304335/5488$ |
$0.98903$ |
$3.61720$ |
$[1, -1, 0, 50853, 599381]$ |
\(y^2+xy=x^3-x^2+50853x+599381\) |
3.4.0.a.1, 14.2.0.a.1, 30.8.0-3.a.1.2, 42.8.0.a.1, 105.8.0.?, $\ldots$ |
$[ ]$ |
| 198450.x1 |
198450fl1 |
198450.x |
198450fl |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 3^{6} \cdot 5^{4} \cdot 7^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$6.036551918$ |
$1$ |
|
$0$ |
$497664$ |
$1.387579$ |
$-385956225/28$ |
$0.94392$ |
$3.64610$ |
$[1, -1, 0, -57192, -5250484]$ |
\(y^2+xy=x^3-x^2-57192x-5250484\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 14.2.0.a.1, 21.8.0-3.a.1.1, 42.16.0-42.a.1.2 |
$[(2902/3, 79976/3)]$ |
| 198450.x2 |
198450fl2 |
198450.x |
198450fl |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 3^{10} \cdot 5^{4} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$2.012183972$ |
$1$ |
|
$4$ |
$1492992$ |
$1.936884$ |
$-225/21952$ |
$1.17573$ |
$3.81616$ |
$[1, -1, 0, -2067, -14853259]$ |
\(y^2+xy=x^3-x^2-2067x-14853259\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 14.2.0.a.1, 21.8.0-3.a.1.2, 42.16.0-42.a.1.1 |
$[(254, 853)]$ |
| 198450.y1 |
198450fm2 |
198450.y |
198450fm |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{9} \cdot 3^{12} \cdot 5^{4} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$2.995416922$ |
$1$ |
|
$2$ |
$3359232$ |
$2.258568$ |
$-1812792825/25088$ |
$0.96218$ |
$4.31522$ |
$[1, -1, 0, -862017, 311927741]$ |
\(y^2+xy=x^3-x^2-862017x+311927741\) |
3.4.0.a.1, 8.2.0.a.1, 21.8.0-3.a.1.2, 24.8.0.a.1, 168.16.0.? |
$[(569, 2043)]$ |
| 198450.y2 |
198450fm1 |
198450.y |
198450fm |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{4} \cdot 7^{12} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$8.986250766$ |
$1$ |
|
$0$ |
$1119744$ |
$1.709261$ |
$1047929175/941192$ |
$0.97728$ |
$3.54785$ |
$[1, -1, 0, 38358, 2138716]$ |
\(y^2+xy=x^3-x^2+38358x+2138716\) |
3.4.0.a.1, 8.2.0.a.1, 21.8.0-3.a.1.1, 24.8.0.a.1, 168.16.0.? |
$[(9739/15, 6573832/15)]$ |
| 198450.z1 |
198450fn2 |
198450.z |
198450fn |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{30} \cdot 3^{10} \cdot 5^{8} \cdot 7^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$9.044687405$ |
$1$ |
|
$0$ |
$111974400$ |
$3.862221$ |
$-25148941562385/368293445632$ |
$1.05278$ |
$5.71086$ |
$[1, -1, 0, -85137117, 1550805217541]$ |
\(y^2+xy=x^3-x^2-85137117x+1550805217541\) |
3.4.0.a.1, 6.8.0-3.a.1.2, 14.2.0.a.1, 21.8.0-3.a.1.2, 42.16.0-42.a.1.1 |
$[(80406314/41, 710991363363/41)]$ |
| 198450.z2 |
198450fn1 |
198450.z |
198450fn |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 3^{6} \cdot 5^{8} \cdot 7^{15} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$42$ |
$16$ |
$0$ |
$27.13406221$ |
$1$ |
|
$0$ |
$37324800$ |
$3.312912$ |
$2743748976015/41322093568$ |
$1.05972$ |
$5.16489$ |
$[1, -1, 0, 9402258, -55513303084]$ |
\(y^2+xy=x^3-x^2+9402258x-55513303084\) |
3.4.0.a.1, 6.8.0-3.a.1.1, 14.2.0.a.1, 21.8.0-3.a.1.1, 42.16.0-42.a.1.2 |
$[(15632592646924/54735, 59955939032612738198/54735)]$ |
| 198450.ba1 |
198450gp4 |
198450.ba |
198450gp |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{7} \cdot 3^{12} \cdot 5^{6} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$6531840$ |
$2.596348$ |
$-189613868625/128$ |
$1.12596$ |
$4.95837$ |
$[1, -1, 0, -11875992, 15755604416]$ |
\(y^2+xy=x^3-x^2-11875992x+15755604416\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.4, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
| 198450.ba2 |
198450gp3 |
198450.ba |
198450gp |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 3^{4} \cdot 5^{6} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$2177280$ |
$2.047043$ |
$-1159088625/2097152$ |
$1.11235$ |
$3.93620$ |
$[1, -1, 0, -115992, 30916416]$ |
\(y^2+xy=x^3-x^2-115992x+30916416\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.1, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
| 198450.ba3 |
198450gp1 |
198450.ba |
198450gp |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 3^{4} \cdot 5^{6} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$311040$ |
$1.074087$ |
$-140625/8$ |
$1.17810$ |
$3.08848$ |
$[1, -1, 0, -5742, -174084]$ |
\(y^2+xy=x^3-x^2-5742x-174084\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.3, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
| 198450.ba4 |
198450gp2 |
198450.ba |
198450gp |
$4$ |
$21$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 3^{12} \cdot 5^{6} \cdot 7^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 7$ |
8.2.0.1, 3.4.0.1, 7.8.0.1 |
3B, 7B |
$2520$ |
$768$ |
$21$ |
$1$ |
$1$ |
|
$0$ |
$933120$ |
$1.623394$ |
$3375/2$ |
$1.42657$ |
$3.49554$ |
$[1, -1, 0, 31008, -333334]$ |
\(y^2+xy=x^3-x^2+31008x-333334\) |
3.4.0.a.1, 7.8.0.a.1, 8.2.0.a.1, 21.64.1.a.2, 24.8.0.a.1, $\ldots$ |
$[ ]$ |
| 198450.bb1 |
198450gq2 |
198450.bb |
198450gq |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 3^{12} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 3.4.0.1 |
2Cn, 3B |
$2520$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$419904$ |
$1.163136$ |
$415233/4$ |
$0.91249$ |
$3.25196$ |
$[1, -1, 0, -11517, 474641]$ |
\(y^2+xy=x^3-x^2-11517x+474641\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 24.16.0.a.2, 105.8.0.?, $\ldots$ |
$[ ]$ |
| 198450.bb2 |
198450gq1 |
198450.bb |
198450gq |
$2$ |
$3$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{6} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 3.4.0.1 |
2Cn, 3B |
$2520$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$139968$ |
$0.613830$ |
$1876833/64$ |
$0.92331$ |
$2.65513$ |
$[1, -1, 0, -1017, -11859]$ |
\(y^2+xy=x^3-x^2-1017x-11859\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 24.16.0.a.1, 105.8.0.?, $\ldots$ |
$[ ]$ |
| 198450.bc1 |
198450el1 |
198450.bc |
198450el |
$1$ |
$1$ |
\( 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 3^{10} \cdot 5^{3} \cdot 7^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1612800$ |
$1.696192$ |
$19773/16$ |
$1.01492$ |
$3.54309$ |
$[1, -1, 0, 37623, -1782019]$ |
\(y^2+xy=x^3-x^2+37623x-1782019\) |
70.2.0.a.1 |
$[ ]$ |