Learn more

Refine search


Results (1-50 of 181 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
196650.a1 196650.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $2$ $\Z/2\Z$ $1.100053221$ $[1, -1, 0, -39042, 2417116]$ \(y^2+xy=x^3-x^2-39042x+2417116\) 2.3.0.a.1, 24.6.0.a.1, 8740.6.0.?, 52440.12.0.? $[(239, 2468), (9, 1433)]$
196650.a2 196650.a \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $2$ $\Z/2\Z$ $4.400212887$ $[1, -1, 0, -12042, -471884]$ \(y^2+xy=x^3-x^2-12042x-471884\) 2.3.0.a.1, 24.6.0.d.1, 4370.6.0.?, 52440.12.0.? $[(-52, 134), (140, 686)]$
196650.b1 196650.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $8.453796839$ $[1, -1, 0, -6291042, -6071827384]$ \(y^2+xy=x^3-x^2-6291042x-6071827384\) 2.3.0.a.1, 60.6.0.c.1, 5244.6.0.?, 8740.6.0.?, 26220.12.0.? $[(3245, 85989)]$
196650.b2 196650.b \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $4.226898419$ $[1, -1, 0, -391542, -95633884]$ \(y^2+xy=x^3-x^2-391542x-95633884\) 2.3.0.a.1, 30.6.0.a.1, 5244.6.0.?, 8740.6.0.?, 26220.12.0.? $[(1345, 41866)]$
196650.c1 196650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -26830827, -53486484219]$ \(y^2+xy=x^3-x^2-26830827x-53486484219\) 2.3.0.a.1, 60.6.0.c.1, 4370.6.0.?, 5244.6.0.?, 26220.12.0.? $[ ]$
196650.c2 196650.c \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1659627, -853505019]$ \(y^2+xy=x^3-x^2-1659627x-853505019\) 2.3.0.a.1, 30.6.0.a.1, 5244.6.0.?, 8740.6.0.?, 26220.12.0.? $[ ]$
196650.d1 196650.d \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.878789643$ $[1, -1, 0, 49233, 5088941]$ \(y^2+xy=x^3-x^2+49233x+5088941\) 552.2.0.? $[(55, 2794)]$
196650.e1 196650.e \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $31.27273687$ $[1, -1, 0, -2967567, -1931120659]$ \(y^2+xy=x^3-x^2-2967567x-1931120659\) 3496.2.0.? $[(-46180378306483/217643, 65733296887352213006/217643)]$
196650.f1 196650.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $1.434521884$ $[1, -1, 0, -526617, -145746959]$ \(y^2+xy=x^3-x^2-526617x-145746959\) 2.3.0.a.1, 60.6.0.c.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[(-430, 1241)]$
196650.f2 196650.f \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $2.869043768$ $[1, -1, 0, -9117, -5504459]$ \(y^2+xy=x^3-x^2-9117x-5504459\) 2.3.0.a.1, 30.6.0.a.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[(338, 5303)]$
196650.g1 196650.g \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3792, -90634]$ \(y^2+xy=x^3-x^2-3792x-90634\) 10488.2.0.? $[ ]$
196650.h1 196650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $25.68317025$ $[1, -1, 0, -1972068417, 31632967162741]$ \(y^2+xy=x^3-x^2-1972068417x+31632967162741\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.5, 15.8.0-3.a.1.2, $\ldots$ $[(145707825195/2074, 17006467022869561/2074)]$
196650.h2 196650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $8.561056750$ $[1, -1, 0, -367083792, -2697638383634]$ \(y^2+xy=x^3-x^2-367083792x-2697638383634\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.11, 15.8.0-3.a.1.1, $\ldots$ $[(26145, 2348314)]$
196650.h3 196650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $4.280528375$ $[1, -1, 0, -12130542, -81987884384]$ \(y^2+xy=x^3-x^2-12130542x-81987884384\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.1, 15.8.0-3.a.1.1, 30.48.0-30.b.1.2, $\ldots$ $[(9539, 813893)]$
196650.h4 196650.h \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $12.84158512$ $[1, -1, 0, 108488583, 2136910573741]$ \(y^2+xy=x^3-x^2+108488583x+2136910573741\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0-6.a.1.3, 15.8.0-3.a.1.2, 30.48.0-30.b.1.1, $\ldots$ $[(4201619/34, 63050725877/34)]$
196650.i1 196650.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $1.225855042$ $[1, -1, 0, -1279317, 557268341]$ \(y^2+xy=x^3-x^2-1279317x+557268341\) 2.3.0.a.1, 24.6.0.a.1, 3496.6.0.?, 5244.6.0.?, 10488.12.0.? $[(649, -512)]$
196650.i2 196650.i \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $2.451710084$ $[1, -1, 0, -79317, 8868341]$ \(y^2+xy=x^3-x^2-79317x+8868341\) 2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? $[(58, 2083)]$
196650.j1 196650.j \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $3.070707767$ $[1, -1, 0, -754914042, 11868169456116]$ \(y^2+xy=x^3-x^2-754914042x+11868169456116\) 8740.2.0.? $[(-9876, 4289838)]$
196650.k1 196650.k \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $7.474376022$ $[1, -1, 0, -4317, 61091]$ \(y^2+xy=x^3-x^2-4317x+61091\) 3496.2.0.? $[(-49/5, 33086/5)]$
196650.l1 196650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $8.239097126$ $[1, -1, 0, -188827317, -997009657659]$ \(y^2+xy=x^3-x^2-188827317x-997009657659\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 1140.12.0.? $[(-127011/4, 2866497/4)]$
196650.l2 196650.l \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $4.119548563$ $[1, -1, 0, -7909317, -26022751659]$ \(y^2+xy=x^3-x^2-7909317x-26022751659\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? $[(19671/2, 1839279/2)]$
196650.m1 196650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $2.464187558$ $[1, -1, 0, -147867, 21863041]$ \(y^2+xy=x^3-x^2-147867x+21863041\) 2.3.0.a.1, 60.6.0.c.1, 76.6.0.?, 570.6.0.?, 1140.12.0.? $[(345, 3266)]$
196650.m2 196650.m \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $1.232093779$ $[1, -1, 0, -5367, 630541]$ \(y^2+xy=x^3-x^2-5367x+630541\) 2.3.0.a.1, 30.6.0.a.1, 76.6.0.?, 1140.12.0.? $[(-30, 889)]$
196650.n1 196650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $10.99564053$ $[1, -1, 0, -9117, -1134459]$ \(y^2+xy=x^3-x^2-9117x-1134459\) 3.8.0-3.a.1.1, 1748.2.0.?, 5244.16.0.? $[(423802/27, 265437649/27)]$
196650.n2 196650.n \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/3\Z$ $3.665213511$ $[1, -1, 0, 80883, 28295541]$ \(y^2+xy=x^3-x^2+80883x+28295541\) 3.8.0-3.a.1.2, 1748.2.0.?, 5244.16.0.? $[(190, 7011)]$
196650.o1 196650.o \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $5.487827287$ $[1, -1, 0, -2039802117, -35485831612459]$ \(y^2+xy=x^3-x^2-2039802117x-35485831612459\) 13110.2.0.? $[(6230170, 15547170739)]$
196650.p1 196650.p \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.087160837$ $[1, -1, 0, 633, 116541]$ \(y^2+xy=x^3-x^2+633x+116541\) 13110.2.0.? $[(94, 953)]$
196650.q1 196650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $0.753663034$ $[1, -1, 0, -29809692, 62652154216]$ \(y^2+xy=x^3-x^2-29809692x+62652154216\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 460.12.0.?, 760.12.0.?, $\ldots$ $[(3149, -1237)]$
196650.q2 196650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $3.014652138$ $[1, -1, 0, -2719692, -8275784]$ \(y^2+xy=x^3-x^2-2719692x-8275784\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.2, 760.12.0.?, 920.12.0.?, $\ldots$ $[(-7, 3284)]$
196650.q3 196650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.507326069$ $[1, -1, 0, -1864692, 977539216]$ \(y^2+xy=x^3-x^2-1864692x+977539216\) 2.6.0.a.1, 24.12.0-2.a.1.1, 460.12.0.?, 760.12.0.?, 1140.12.0.?, $\ldots$ $[(368, 18284)]$
196650.q4 196650.q \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $3.014652138$ $[1, -1, 0, -64692, 28939216]$ \(y^2+xy=x^3-x^2-64692x+28939216\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.6, 460.12.0.?, 760.12.0.?, $\ldots$ $[(200, 4796)]$
196650.r1 196650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $2.175538859$ $[1, -1, 0, -1211817, 370923341]$ \(y^2+xy=x^3-x^2-1211817x+370923341\) 2.3.0.a.1, 24.6.0.a.1, 152.6.0.?, 228.6.0.?, 456.12.0.? $[(299, 5788)]$
196650.r2 196650.r \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $4.351077718$ $[1, -1, 0, -443817, -109076659]$ \(y^2+xy=x^3-x^2-443817x-109076659\) 2.3.0.a.1, 24.6.0.d.1, 114.6.0.?, 152.6.0.?, 456.12.0.? $[(-421, 1948)]$
196650.s1 196650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $3.166869620$ $[1, -1, 0, -829692, -290675034]$ \(y^2+xy=x^3-x^2-829692x-290675034\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.1, 276.12.0.?, 456.12.0.?, $\ldots$ $[(-525, 204)]$
196650.s2 196650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.583434810$ $[1, -1, 0, -53442, -4238784]$ \(y^2+xy=x^3-x^2-53442x-4238784\) 2.6.0.a.1, 40.12.0-2.a.1.1, 276.12.0.?, 456.12.0.?, 1140.12.0.?, $\ldots$ $[(-111, 618)]$
196650.s3 196650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $0.791717405$ $[1, -1, 0, -12942, 499716]$ \(y^2+xy=x^3-x^2-12942x+499716\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.4, 276.12.0.?, 456.12.0.?, $\ldots$ $[(24, 438)]$
196650.s4 196650.s \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $3.166869620$ $[1, -1, 0, 74808, -21552534]$ \(y^2+xy=x^3-x^2+74808x-21552534\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.2, 456.12.0.?, 552.12.0.?, $\ldots$ $[(325, 5921)]$
196650.t1 196650.t \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 3933, -185909]$ \(y^2+xy=x^3-x^2+3933x-185909\) 10488.2.0.? $[ ]$
196650.u1 196650.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -9341442, -10986894284]$ \(y^2+xy=x^3-x^2-9341442x-10986894284\) 2.3.0.a.1, 24.6.0.a.1, 8740.6.0.?, 52440.12.0.? $[ ]$
196650.u2 196650.u \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -593442, -165618284]$ \(y^2+xy=x^3-x^2-593442x-165618284\) 2.3.0.a.1, 24.6.0.d.1, 4370.6.0.?, 52440.12.0.? $[ ]$
196650.v1 196650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $8.723223539$ $[1, -1, 0, -1817667, 519767491]$ \(y^2+xy=x^3-x^2-1817667x+519767491\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.y.1, 120.24.0.?, $\ldots$ $[(4755/2, 44437/2)]$
196650.v2 196650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.361611769$ $[1, -1, 0, -834417, -287480759]$ \(y^2+xy=x^3-x^2-834417x-287480759\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0.b.1, 120.24.0.?, 3496.12.0.?, $\ldots$ $[(1070, 6089)]$
196650.v3 196650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $8.723223539$ $[1, -1, 0, -829917, -290797259]$ \(y^2+xy=x^3-x^2-829917x-290797259\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0.y.1, 120.24.0.?, $\ldots$ $[(36338, 6906503)]$
196650.v4 196650.v \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\Z/2\Z$ $8.723223539$ $[1, -1, 0, 76833, -882527009]$ \(y^2+xy=x^3-x^2+76833x-882527009\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.s.1, 120.24.0.?, $\ldots$ $[(581331/2, 442654469/2)]$
196650.w1 196650.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $2$ $\mathsf{trivial}$ $0.422903215$ $[1, -1, 0, -500292, 158049616]$ \(y^2+xy=x^3-x^2-500292x+158049616\) 3.4.0.a.1, 15.8.0-3.a.1.2, 2622.8.0.?, 13110.16.0.? $[(659, 10358), (488, 5228)]$
196650.w2 196650.w \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $2$ $\mathsf{trivial}$ $0.422903215$ $[1, -1, 0, 43083, -1159259]$ \(y^2+xy=x^3-x^2+43083x-1159259\) 3.4.0.a.1, 15.8.0-3.a.1.1, 2622.8.0.?, 13110.16.0.? $[(54, 1123), (974, 30563)]$
196650.x1 196650.x \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $1.073213226$ $[1, -1, 0, 228, -25264]$ \(y^2+xy=x^3-x^2+228x-25264\) 13110.2.0.? $[(40, 196)]$
196650.y1 196650.y \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $0.566795459$ $[1, -1, 0, -9065787, 10516738021]$ \(y^2+xy=x^3-x^2-9065787x+10516738021\) 13110.2.0.? $[(1014, 48133)]$
196650.z1 196650.z \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $1$ $\mathsf{trivial}$ $3.602515737$ $[1, -1, 0, -657, -6939]$ \(y^2+xy=x^3-x^2-657x-6939\) 552.2.0.? $[(465, 9771)]$
196650.ba1 196650.ba \( 2 \cdot 3^{2} \cdot 5^{2} \cdot 19 \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -8667, -308259]$ \(y^2+xy=x^3-x^2-8667x-308259\) 3496.2.0.? $[ ]$
Next   displayed columns for results