Learn more

Refine search


Results (1-50 of 80 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
19536.a1 19536.a \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z$ $0.572445085$ $[0, -1, 0, -800, 8976]$ \(y^2=x^3-x^2-800x+8976\) 2.3.0.a.1, 74.6.0.?, 132.6.0.?, 4884.12.0.? $[(20, 24), (16, 4)]$
19536.a2 19536.a \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z$ $2.289780341$ $[0, -1, 0, -60, 96]$ \(y^2=x^3-x^2-60x+96\) 2.3.0.a.1, 66.6.0.a.1, 148.6.0.?, 4884.12.0.? $[(8, 8), (-4, 16)]$
19536.b1 19536.b \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $0.976934598$ $[0, -1, 0, -164, 720]$ \(y^2=x^3-x^2-164x+720\) 2.3.0.a.1, 44.6.0.c.1, 74.6.0.?, 1628.12.0.? $[(-4, 36)]$
19536.b2 19536.b \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $1.953869196$ $[0, -1, 0, 21, 54]$ \(y^2=x^3-x^2+21x+54\) 2.3.0.a.1, 22.6.0.a.1, 148.6.0.?, 1628.12.0.? $[(2, 10)]$
19536.c1 19536.c \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $14.98700085$ $[0, -1, 0, -9455424, -11187867600]$ \(y^2=x^3-x^2-9455424x-11187867600\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 44.12.0-4.c.1.2, 88.24.0.?, $\ldots$ $[(12828925/42, 40893063695/42)]$
19536.c2 19536.c \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/4\Z$ $3.746750214$ $[0, -1, 0, -597624, -170517312]$ \(y^2=x^3-x^2-597624x-170517312\) 2.3.0.a.1, 4.12.0-4.c.1.1, 74.6.0.?, 88.24.0.?, 148.24.0.?, $\ldots$ $[(1428, 43428)]$
19536.c3 19536.c \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $7.493500428$ $[0, -1, 0, -590964, -174662496]$ \(y^2=x^3-x^2-590964x-174662496\) 2.6.0.a.1, 4.12.0-2.a.1.1, 44.24.0-44.b.1.2, 148.24.0.?, 1628.48.0.? $[(57768/7, 9492120/7)]$
19536.c4 19536.c \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $3.746750214$ $[0, -1, 0, -36519, -2784546]$ \(y^2=x^3-x^2-36519x-2784546\) 2.3.0.a.1, 4.12.0-4.c.1.2, 22.6.0.a.1, 44.24.0-44.g.1.1, 296.24.0.?, $\ldots$ $[(2146/3, 38258/3)]$
19536.d1 19536.d \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -13093488, -18222502464]$ \(y^2=x^3-x^2-13093488x-18222502464\) 2.3.0.a.1, 74.6.0.?, 132.6.0.?, 4884.12.0.? $[ ]$
19536.d2 19536.d \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -969328, -172053056]$ \(y^2=x^3-x^2-969328x-172053056\) 2.3.0.a.1, 66.6.0.a.1, 148.6.0.?, 4884.12.0.? $[ ]$
19536.e1 19536.e \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $0.664855422$ $[0, -1, 0, -3168, 69696]$ \(y^2=x^3-x^2-3168x+69696\) 2.3.0.a.1, 74.6.0.?, 132.6.0.?, 4884.12.0.? $[(32, 8)]$
19536.e2 19536.e \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $1.329710844$ $[0, -1, 0, -208, 1024]$ \(y^2=x^3-x^2-208x+1024\) 2.3.0.a.1, 66.6.0.a.1, 148.6.0.?, 4884.12.0.? $[(0, 32)]$
19536.f1 19536.f \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -16248, 802416]$ \(y^2=x^3-x^2-16248x+802416\) 2.3.0.a.1, 12.6.0.a.1, 1628.6.0.?, 4884.12.0.? $[ ]$
19536.f2 19536.f \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -888, 15984]$ \(y^2=x^3-x^2-888x+15984\) 2.3.0.a.1, 12.6.0.b.1, 814.6.0.?, 4884.12.0.? $[ ]$
19536.g1 19536.g \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $4.332991854$ $[0, -1, 0, -5048, -136032]$ \(y^2=x^3-x^2-5048x-136032\) 2.3.0.a.1, 12.6.0.a.1, 1628.6.0.?, 4884.12.0.? $[(886, 26270)]$
19536.g2 19536.g \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $8.665983709$ $[0, -1, 0, -188, -3840]$ \(y^2=x^3-x^2-188x-3840\) 2.3.0.a.1, 12.6.0.b.1, 814.6.0.?, 4884.12.0.? $[(5541/5, 410664/5)]$
19536.h1 19536.h \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -591128, -168282384]$ \(y^2=x^3-x^2-591128x-168282384\) 2.3.0.a.1, 8.6.0.d.1, 66.6.0.a.1, 264.12.0.? $[ ]$
19536.h2 19536.h \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 285032, -625287440]$ \(y^2=x^3-x^2+285032x-625287440\) 2.3.0.a.1, 8.6.0.a.1, 132.6.0.?, 264.12.0.? $[ ]$
19536.i1 19536.i \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $0.943447541$ $[0, -1, 0, -17289568, 27676730368]$ \(y^2=x^3-x^2-17289568x+27676730368\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 74.6.0.?, $\ldots$ $[(2352, 4144)]$
19536.i2 19536.i \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $1.886895083$ $[0, -1, 0, -1080608, 432710400]$ \(y^2=x^3-x^2-1080608x+432710400\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 66.24.0.b.1, $\ldots$ $[(613, 518)]$
19536.i3 19536.i \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $2.830342624$ $[0, -1, 0, -214048, 37805824]$ \(y^2=x^3-x^2-214048x+37805824\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 74.6.0.?, $\ldots$ $[(240, 448)]$
19536.i4 19536.i \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $5.660685249$ $[0, -1, 0, -24608, -536832]$ \(y^2=x^3-x^2-24608x-536832\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 66.24.0.b.1, $\ldots$ $[(1669, 67858)]$
19536.j1 19536.j \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -8808, -221760]$ \(y^2=x^3-x^2-8808x-221760\) 2.3.0.a.1, 74.6.0.?, 132.6.0.?, 4884.12.0.? $[ ]$
19536.j2 19536.j \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -8068, -276224]$ \(y^2=x^3-x^2-8068x-276224\) 2.3.0.a.1, 66.6.0.a.1, 148.6.0.?, 4884.12.0.? $[ ]$
19536.k1 19536.k \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4048, -84224]$ \(y^2=x^3-x^2-4048x-84224\) 2.3.0.a.1, 74.6.0.?, 132.6.0.?, 4884.12.0.? $[ ]$
19536.k2 19536.k \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1088, 12864]$ \(y^2=x^3-x^2-1088x+12864\) 2.3.0.a.1, 66.6.0.a.1, 148.6.0.?, 4884.12.0.? $[ ]$
19536.l1 19536.l \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -13617, 444852]$ \(y^2=x^3-x^2-13617x+444852\) 2.3.0.a.1, 4.6.0.b.1, 74.6.0.?, 88.12.0.?, 148.24.0.?, $\ldots$ $[ ]$
19536.l2 19536.l \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 35388, 2875500]$ \(y^2=x^3-x^2+35388x+2875500\) 2.3.0.a.1, 4.6.0.a.1, 88.12.0.?, 148.12.0.?, 296.24.0.?, $\ldots$ $[ ]$
19536.m1 19536.m \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -58989947, -174367746138]$ \(y^2=x^3-x^2-58989947x-174367746138\) 2.3.0.a.1, 44.6.0.c.1, 74.6.0.?, 1628.12.0.? $[ ]$
19536.m2 19536.m \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -58989892, -174368087600]$ \(y^2=x^3-x^2-58989892x-174368087600\) 2.3.0.a.1, 22.6.0.a.1, 148.6.0.?, 1628.12.0.? $[ ]$
19536.n1 19536.n \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -107, 462]$ \(y^2=x^3-x^2-107x+462\) 2.3.0.a.1, 44.6.0.c.1, 74.6.0.?, 1628.12.0.? $[ ]$
19536.n2 19536.n \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -52, 880]$ \(y^2=x^3-x^2-52x+880\) 2.3.0.a.1, 22.6.0.a.1, 148.6.0.?, 1628.12.0.? $[ ]$
19536.o1 19536.o \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -9512, 360240]$ \(y^2=x^3-x^2-9512x+360240\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 88.12.0.?, 148.12.0.?, $\ldots$ $[ ]$
19536.o2 19536.o \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -3272, -66768]$ \(y^2=x^3-x^2-3272x-66768\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 44.12.0-4.c.1.2, 66.6.0.a.1, $\ldots$ $[ ]$
19536.o3 19536.o \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -632, 5040]$ \(y^2=x^3-x^2-632x+5040\) 2.6.0.a.1, 12.12.0-2.a.1.1, 44.12.0-2.a.1.1, 132.24.0.?, 148.12.0.?, $\ldots$ $[ ]$
19536.o4 19536.o \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 88, 432]$ \(y^2=x^3-x^2+88x+432\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 44.12.0-4.c.1.1, 148.12.0.?, $\ldots$ $[ ]$
19536.p1 19536.p \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $0.629913277$ $[0, 1, 0, -440, 1284]$ \(y^2=x^3+x^2-440x+1284\) 2.3.0.a.1, 12.6.0.a.1, 1628.6.0.?, 4884.12.0.? $[(-8, 66)]$
19536.p2 19536.p \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $1.259826555$ $[0, 1, 0, 100, 204]$ \(y^2=x^3+x^2+100x+204\) 2.3.0.a.1, 12.6.0.b.1, 814.6.0.?, 4884.12.0.? $[(7, 36)]$
19536.q1 19536.q \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.365008248$ $[0, 1, 0, 608, 2804]$ \(y^2=x^3+x^2+608x+2804\) 3256.2.0.? $[(26, 192)]$
19536.r1 19536.r \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z$ $4.885139886$ $[0, 1, 0, -468864, 123415380]$ \(y^2=x^3+x^2-468864x+123415380\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 132.12.0.?, 264.24.0.?, $\ldots$ $[(399, 138), (420, 870)]$
19536.r2 19536.r \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $1.221284971$ $[0, 1, 0, -29304, 1920996]$ \(y^2=x^3+x^2-29304x+1920996\) 2.6.0.a.1, 4.12.0-2.a.1.1, 132.24.0.?, 296.24.0.?, 9768.48.0.? $[(66, 528), (102, 60)]$
19536.r3 19536.r \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/4\Z$ $1.221284971$ $[0, 1, 0, -27824, 2125236]$ \(y^2=x^3+x^2-27824x+2125236\) 2.3.0.a.1, 4.12.0-4.c.1.1, 264.24.0.?, 296.24.0.?, 9768.48.0.? $[(46, 972), (78, 660)]$
19536.r4 19536.r \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z$ $1.221284971$ $[0, 1, 0, -1924, 26300]$ \(y^2=x^3+x^2-1924x+26300\) 2.3.0.a.1, 4.12.0-4.c.1.2, 66.6.0.a.1, 132.24.0.?, 296.24.0.?, $\ldots$ $[(98, 888), (133/2, 111/2)]$
19536.s1 19536.s \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z$ $0.566959843$ $[0, 1, 0, -7624, 251252]$ \(y^2=x^3+x^2-7624x+251252\) 2.3.0.a.1, 66.6.0.a.1, 296.6.0.?, 9768.12.0.? $[(62, 144), (44, 54)]$
19536.s2 19536.s \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $2$ $\Z/2\Z$ $0.566959843$ $[0, 1, 0, -1704, 637236]$ \(y^2=x^3+x^2-1704x+637236\) 2.3.0.a.1, 132.6.0.?, 296.6.0.?, 9768.12.0.? $[(6, 792), (-60, 726)]$
19536.t1 19536.t \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/4\Z$ $3.318010553$ $[0, 1, 0, -19464, 1036836]$ \(y^2=x^3+x^2-19464x+1036836\) 2.3.0.a.1, 4.12.0-4.c.1.1, 44.24.0-44.h.1.2, 296.24.0.?, 3256.48.0.? $[(99, 300)]$
19536.t2 19536.t \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.659005276$ $[0, 1, 0, -1644, 3276]$ \(y^2=x^3+x^2-1644x+3276\) 2.6.0.a.1, 4.12.0-2.a.1.1, 44.24.0-44.a.1.1, 148.24.0.?, 1628.48.0.? $[(-9, 132)]$
19536.t3 19536.t \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $3.318010553$ $[0, 1, 0, -1039, -13180]$ \(y^2=x^3+x^2-1039x-13180\) 2.3.0.a.1, 4.12.0-4.c.1.2, 74.6.0.?, 88.24.0.?, 148.24.0.?, $\ldots$ $[(44, 168)]$
19536.t4 19536.t \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $1$ $\Z/2\Z$ $0.829502638$ $[0, 1, 0, 6496, 32580]$ \(y^2=x^3+x^2+6496x+32580\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 44.12.0-4.c.1.2, 88.24.0.?, $\ldots$ $[(22, 432)]$
19536.u1 19536.u \( 2^{4} \cdot 3 \cdot 11 \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -89718824, -327124581708]$ \(y^2=x^3+x^2-89718824x-327124581708\) 2.3.0.a.1, 4.12.0-4.c.1.2, 12.24.0-12.h.1.1, 88.24.0.?, 264.48.0.? $[ ]$
Next   displayed columns for results