Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
193550.a1 |
193550by1 |
193550.a |
193550by |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{8} \cdot 5^{6} \cdot 7^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$316$ |
$2$ |
$0$ |
$3.173647946$ |
$1$ |
|
$2$ |
$1140480$ |
$1.311096$ |
$72511713/20224$ |
$0.89606$ |
$3.23917$ |
$[1, -1, 0, -10642, -301484]$ |
\(y^2+xy=x^3-x^2-10642x-301484\) |
316.2.0.? |
$[(-60, 374)]$ |
193550.b1 |
193550bx1 |
193550.b |
193550bx |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{5} \cdot 5^{8} \cdot 7^{8} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$3.447191474$ |
$1$ |
|
$2$ |
$2304000$ |
$1.710068$ |
$123210855/123872$ |
$0.78808$ |
$3.54714$ |
$[1, -1, 0, 37133, 2355541]$ |
\(y^2+xy=x^3-x^2+37133x+2355541\) |
632.2.0.? |
$[(-47, 734)]$ |
193550.c1 |
193550cc2 |
193550.c |
193550cc |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{4} \cdot 5^{7} \cdot 7^{6} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2211840$ |
$1.933390$ |
$8490912541201/499280$ |
$0.91378$ |
$4.19789$ |
$[1, 0, 1, -520651, -144635802]$ |
\(y^2+xy+y=x^3-520651x-144635802\) |
2.3.0.a.1, 10.6.0.a.1, 316.6.0.?, 1580.12.0.? |
$[ ]$ |
193550.c2 |
193550cc1 |
193550.c |
193550cc |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{8} \cdot 5^{8} \cdot 7^{6} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1580$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1105920$ |
$1.586817$ |
$-1732323601/505600$ |
$0.84355$ |
$3.53341$ |
$[1, 0, 1, -30651, -2535802]$ |
\(y^2+xy+y=x^3-30651x-2535802\) |
2.3.0.a.1, 20.6.0.c.1, 158.6.0.?, 1580.12.0.? |
$[ ]$ |
193550.d1 |
193550cd2 |
193550.d |
193550cd |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{3} \cdot 5^{10} \cdot 7^{14} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$632$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$31850496$ |
$3.239460$ |
$1296173477277146161/179890615205000$ |
$1.00763$ |
$5.17839$ |
$[1, 0, 1, -27825901, 49256000448]$ |
\(y^2+xy+y=x^3-27825901x+49256000448\) |
2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? |
$[ ]$ |
193550.d2 |
193550cd1 |
193550.d |
193550cd |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{6} \cdot 5^{14} \cdot 7^{10} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$632$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$15925248$ |
$2.892887$ |
$1319381670453839/4741975000000$ |
$1.10445$ |
$4.74799$ |
$[1, 0, 1, 2799099, 4114750448]$ |
\(y^2+xy+y=x^3+2799099x+4114750448\) |
2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? |
$[ ]$ |
193550.e1 |
193550ca1 |
193550.e |
193550ca |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{5} \cdot 5^{3} \cdot 7^{4} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3160$ |
$2$ |
$0$ |
$0.456626737$ |
$1$ |
|
$2$ |
$979200$ |
$1.591841$ |
$-30208039691551421/2528$ |
$0.96712$ |
$4.15326$ |
$[1, 0, 1, -434411, 110168118]$ |
\(y^2+xy+y=x^3-434411x+110168118\) |
3160.2.0.? |
$[(382, -139)]$ |
193550.f1 |
193550bz1 |
193550.f |
193550bz |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{58} \cdot 5^{8} \cdot 7^{7} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2212$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$387532800$ |
$4.607574$ |
$99467648912925300477335/159391398011896594432$ |
$1.00707$ |
$6.41367$ |
$[1, 0, 1, 3457552674, 104080512356048]$ |
\(y^2+xy+y=x^3+3457552674x+104080512356048\) |
2212.2.0.? |
$[ ]$ |
193550.g1 |
193550cb1 |
193550.g |
193550cb |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2 \cdot 5^{3} \cdot 7^{8} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3160$ |
$2$ |
$0$ |
$2.934120526$ |
$1$ |
|
$2$ |
$360192$ |
$0.802603$ |
$15379/158$ |
$0.70694$ |
$2.69894$ |
$[1, 0, 1, 464, -15732]$ |
\(y^2+xy+y=x^3+464x-15732\) |
3160.2.0.? |
$[(22, 61)]$ |
193550.h1 |
193550ch1 |
193550.h |
193550ch |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{9} \cdot 5^{8} \cdot 7^{9} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$2.474841265$ |
$1$ |
|
$2$ |
$2709504$ |
$2.105690$ |
$1697936057/1011200$ |
$0.86209$ |
$3.97777$ |
$[1, 1, 0, 213125, -6371875]$ |
\(y^2+xy=x^3+x^2+213125x-6371875\) |
4424.2.0.? |
$[(2225, 106075)]$ |
193550.i1 |
193550ce1 |
193550.i |
193550ce |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{9} \cdot 5^{8} \cdot 7^{8} \cdot 79^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.721167609$ |
$1$ |
|
$2$ |
$3525120$ |
$2.299709$ |
$18800144375/156574208$ |
$0.92098$ |
$4.17329$ |
$[1, 1, 0, 198425, -124412875]$ |
\(y^2+xy=x^3+x^2+198425x-124412875\) |
8.2.0.a.1 |
$[(785, 22320)]$ |
193550.j1 |
193550ci1 |
193550.j |
193550ci |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2 \cdot 5^{8} \cdot 7^{3} \cdot 79^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$571392$ |
$1.423418$ |
$-81014113783/24651950$ |
$0.85458$ |
$3.37089$ |
$[1, 1, 0, -15775, -948625]$ |
\(y^2+xy=x^3+x^2-15775x-948625\) |
4424.2.0.? |
$[ ]$ |
193550.k1 |
193550cj1 |
193550.k |
193550cj |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{7} \cdot 5^{10} \cdot 7^{9} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$7.041910210$ |
$1$ |
|
$2$ |
$3612672$ |
$2.423061$ |
$-1474925918887/6320000$ |
$0.87320$ |
$4.53426$ |
$[1, 1, 0, -2033525, -1121121875]$ |
\(y^2+xy=x^3+x^2-2033525x-1121121875\) |
4424.2.0.? |
$[(27765, 4606430)]$ |
193550.l1 |
193550cl1 |
193550.l |
193550cl |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{12} \cdot 5^{7} \cdot 7^{8} \cdot 79^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.618786787$ |
$1$ |
|
$4$ |
$3773952$ |
$2.343311$ |
$95923747199/127815680$ |
$0.86286$ |
$4.17102$ |
$[1, 1, 0, 427500, -122606000]$ |
\(y^2+xy=x^3+x^2+427500x-122606000\) |
20.2.0.a.1 |
$[(1245, 47765)]$ |
193550.m1 |
193550ck2 |
193550.m |
193550ck |
$2$ |
$5$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{4} \cdot 5^{6} \cdot 7^{6} \cdot 79^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$11060$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$11088000$ |
$2.919785$ |
$1413378216646643521/49232902384$ |
$1.01962$ |
$5.18550$ |
$[1, 1, 0, -28640525, 58981886125]$ |
\(y^2+xy=x^3+x^2-28640525x+58981886125\) |
5.12.0.a.2, 35.24.0-5.a.2.1, 316.2.0.?, 1580.24.1.?, 11060.48.1.? |
$[ ]$ |
193550.m2 |
193550ck1 |
193550.m |
193550ck |
$2$ |
$5$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{20} \cdot 5^{6} \cdot 7^{6} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$11060$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$2217600$ |
$2.115067$ |
$8194759433281/82837504$ |
$0.96131$ |
$4.19497$ |
$[1, 1, 0, -514525, -141023875]$ |
\(y^2+xy=x^3+x^2-514525x-141023875\) |
5.12.0.a.1, 35.24.0-5.a.1.1, 316.2.0.?, 1580.24.1.?, 11060.48.1.? |
$[ ]$ |
193550.n1 |
193550cf1 |
193550.n |
193550cf |
$2$ |
$5$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{4} \cdot 7^{8} \cdot 79^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.2 |
5B.4.2 |
$22120$ |
$48$ |
$1$ |
$4.538738296$ |
$1$ |
|
$2$ |
$11059200$ |
$2.782375$ |
$-2511686310697746025/1206206108408$ |
$0.96401$ |
$4.96838$ |
$[1, 1, 0, -11864150, 15730653100]$ |
\(y^2+xy=x^3+x^2-11864150x+15730653100\) |
5.12.0.a.2, 35.24.0-5.a.2.1, 632.2.0.?, 3160.24.1.?, 22120.48.1.? |
$[(1959, 2426)]$ |
193550.n2 |
193550cf2 |
193550.n |
193550cf |
$2$ |
$5$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{15} \cdot 5^{8} \cdot 7^{16} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.12.0.1 |
5B.4.1 |
$22120$ |
$48$ |
$1$ |
$22.69369148$ |
$1$ |
|
$0$ |
$55296000$ |
$3.587093$ |
$1160836327766905655/731235767779328$ |
$1.05025$ |
$5.43375$ |
$[1, 1, 0, 78426925, -79496817875]$ |
\(y^2+xy=x^3+x^2+78426925x-79496817875\) |
5.12.0.a.1, 35.24.0-5.a.1.1, 632.2.0.?, 3160.24.1.?, 22120.48.1.? |
$[(12599860649/2251, 4112571247395076/2251)]$ |
193550.o1 |
193550cg1 |
193550.o |
193550cg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{34} \cdot 5^{9} \cdot 7^{2} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15373440$ |
$3.100430$ |
$-42298759185902121413/107219563577344$ |
$0.98412$ |
$5.22229$ |
$[1, 1, 0, -33202950, 73787156500]$ |
\(y^2+xy=x^3+x^2-33202950x+73787156500\) |
20.2.0.a.1 |
$[ ]$ |
193550.p1 |
193550co4 |
193550.p |
193550co |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{3} \cdot 5^{6} \cdot 7^{14} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$22120$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$4718592$ |
$2.541016$ |
$4426535117697057/3643354232$ |
$1.00292$ |
$4.71183$ |
$[1, -1, 0, -4190342, -3298187684]$ |
\(y^2+xy=x^3-x^2-4190342x-3298187684\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 280.24.0.?, 632.24.0.?, $\ldots$ |
$[ ]$ |
193550.p2 |
193550co3 |
193550.p |
193550co |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{3} \cdot 5^{6} \cdot 7^{8} \cdot 79^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$22120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4718592$ |
$2.541016$ |
$1211116876909857/15268431752$ |
$0.96296$ |
$4.60536$ |
$[1, -1, 0, -2720342, 1708730316]$ |
\(y^2+xy=x^3-x^2-2720342x+1708730316\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 140.12.0.?, 280.24.0.?, $\ldots$ |
$[ ]$ |
193550.p3 |
193550co2 |
193550.p |
193550co |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{6} \cdot 5^{6} \cdot 7^{10} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$22120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$2359296$ |
$2.194439$ |
$1959225089697/959017024$ |
$0.98980$ |
$4.07742$ |
$[1, -1, 0, -319342, -27192684]$ |
\(y^2+xy=x^3-x^2-319342x-27192684\) |
2.6.0.a.1, 8.12.0.a.1, 140.12.0.?, 280.24.0.?, 316.12.0.?, $\ldots$ |
$[ ]$ |
193550.p4 |
193550co1 |
193550.p |
193550co |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{12} \cdot 5^{6} \cdot 7^{8} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$22120$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1179648$ |
$1.847866$ |
$23076099423/15855616$ |
$0.91115$ |
$3.71257$ |
$[1, -1, 0, 72658, -3280684]$ |
\(y^2+xy=x^3-x^2+72658x-3280684\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 140.12.0.?, 158.6.0.?, $\ldots$ |
$[ ]$ |
193550.q1 |
193550cp1 |
193550.q |
193550cp |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{9} \cdot 5^{6} \cdot 7^{2} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$846720$ |
$1.609531$ |
$5598411813720369/40448$ |
$1.02431$ |
$4.09172$ |
$[1, -1, 0, -338417, 75859741]$ |
\(y^2+xy=x^3-x^2-338417x+75859741\) |
632.2.0.? |
$[ ]$ |
193550.r1 |
193550cr1 |
193550.r |
193550cr |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2^{9} \cdot 5^{6} \cdot 7^{8} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$28.70249963$ |
$1$ |
|
$0$ |
$5927040$ |
$2.582485$ |
$5598411813720369/40448$ |
$1.02431$ |
$5.05083$ |
$[1, -1, 0, -16582442, -25986726284]$ |
\(y^2+xy=x^3-x^2-16582442x-25986726284\) |
632.2.0.? |
$[(-741959130072219/561793, 210526480465549293121/561793)]$ |
193550.s1 |
193550cm1 |
193550.s |
193550cm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{2} \cdot 5^{9} \cdot 7^{10} \cdot 79^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$24071040$ |
$3.322857$ |
$-1779709194818037/1972156$ |
$1.08088$ |
$5.67302$ |
$[1, -1, 0, -207067492, 1146927635916]$ |
\(y^2+xy=x^3-x^2-207067492x+1146927635916\) |
790.2.0.? |
$[ ]$ |
193550.t1 |
193550cn1 |
193550.t |
193550cn |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{2} \cdot 5^{9} \cdot 7^{4} \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$790$ |
$2$ |
$0$ |
$7.378466466$ |
$1$ |
|
$0$ |
$3438720$ |
$2.349899$ |
$-1779709194818037/1972156$ |
$1.08088$ |
$4.71391$ |
$[1, -1, 0, -4225867, -3342604959]$ |
\(y^2+xy=x^3-x^2-4225867x-3342604959\) |
790.2.0.? |
$[(322524/11, 85767993/11)]$ |
193550.u1 |
193550cs1 |
193550.u |
193550cs |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{13} \cdot 5^{11} \cdot 7^{4} \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3160$ |
$2$ |
$0$ |
$2.531669564$ |
$1$ |
|
$2$ |
$9434880$ |
$2.716549$ |
$-172898395855742529/12621798400000$ |
$1.01255$ |
$4.70296$ |
$[1, -1, 0, -3885317, 3129104341]$ |
\(y^2+xy=x^3-x^2-3885317x+3129104341\) |
3160.2.0.? |
$[(1689, 36343)]$ |
193550.v1 |
193550cq1 |
193550.v |
193550cq |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{13} \cdot 5^{11} \cdot 7^{10} \cdot 79^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3160$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$66044160$ |
$3.689507$ |
$-172898395855742529/12621798400000$ |
$1.01255$ |
$5.66207$ |
$[1, -1, 0, -190380542, -1072902027884]$ |
\(y^2+xy=x^3-x^2-190380542x-1072902027884\) |
3160.2.0.? |
$[ ]$ |
193550.w1 |
193550cu1 |
193550.w |
193550cu |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{5} \cdot 5^{8} \cdot 7^{7} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.539888$ |
$-1/442400$ |
$1.02561$ |
$3.43266$ |
$[1, 0, 1, -26, -1372052]$ |
\(y^2+xy+y=x^3-26x-1372052\) |
4424.2.0.? |
$[ ]$ |
193550.x1 |
193550cv1 |
193550.x |
193550cv |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{9} \cdot 5^{8} \cdot 7^{3} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$1.068921361$ |
$1$ |
|
$4$ |
$387072$ |
$1.132736$ |
$1697936057/1011200$ |
$0.86209$ |
$3.01866$ |
$[1, 0, 1, 4349, 19198]$ |
\(y^2+xy+y=x^3+4349x+19198\) |
4424.2.0.? |
$[(32, 421)]$ |
193550.y1 |
193550cw1 |
193550.y |
193550cw |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2 \cdot 5^{8} \cdot 7^{9} \cdot 79^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3999744$ |
$2.396374$ |
$-81014113783/24651950$ |
$0.85458$ |
$4.32999$ |
$[1, 0, 1, -773001, 323059398]$ |
\(y^2+xy+y=x^3-773001x+323059398\) |
4424.2.0.? |
$[ ]$ |
193550.z1 |
193550cx1 |
193550.z |
193550cx |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{19} \cdot 5^{10} \cdot 7^{6} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$15595200$ |
$3.064732$ |
$-3665123505412225/3272081408$ |
$0.98020$ |
$5.22529$ |
$[1, 0, 1, -33642201, 75161119548]$ |
\(y^2+xy+y=x^3-33642201x+75161119548\) |
8.2.0.a.1 |
$[ ]$ |
193550.ba1 |
193550cy1 |
193550.ba |
193550cy |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{10} \cdot 7^{6} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$66360$ |
$16$ |
$0$ |
$15.41238319$ |
$1$ |
|
$0$ |
$1002240$ |
$1.604382$ |
$-9725425/632$ |
$0.80343$ |
$3.61172$ |
$[1, 0, 1, -46576, -4084202]$ |
\(y^2+xy+y=x^3-46576x-4084202\) |
3.4.0.a.1, 105.8.0.?, 632.2.0.?, 1896.8.0.?, 66360.16.0.? |
$[(28574879/218, 137938790669/218)]$ |
193550.ba2 |
193550cy2 |
193550.ba |
193550cy |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2 \cdot 5^{10} \cdot 7^{6} \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$66360$ |
$16$ |
$0$ |
$5.137461065$ |
$1$ |
|
$0$ |
$3006720$ |
$2.153687$ |
$1685478575/986078$ |
$0.95986$ |
$4.02645$ |
$[1, 0, 1, 259674, -5309202]$ |
\(y^2+xy+y=x^3+259674x-5309202\) |
3.4.0.a.1, 105.8.0.?, 632.2.0.?, 1896.8.0.?, 66360.16.0.? |
$[(20967/2, 3029377/2)]$ |
193550.bb1 |
193550cz1 |
193550.bb |
193550cz |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{7} \cdot 5^{10} \cdot 7^{3} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4424$ |
$2$ |
$0$ |
$1.158871202$ |
$1$ |
|
$4$ |
$516096$ |
$1.450106$ |
$-1474925918887/6320000$ |
$0.87320$ |
$3.57515$ |
$[1, 0, 1, -41501, 3262648]$ |
\(y^2+xy+y=x^3-41501x+3262648\) |
4424.2.0.? |
$[(-38, 2206)]$ |
193550.bc1 |
193550da1 |
193550.bc |
193550da |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{12} \cdot 5^{7} \cdot 7^{2} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$539136$ |
$1.370358$ |
$95923747199/127815680$ |
$0.86286$ |
$3.21191$ |
$[1, 0, 1, 8724, 358698]$ |
\(y^2+xy+y=x^3+8724x+358698\) |
20.2.0.a.1 |
$[ ]$ |
193550.bd1 |
193550db3 |
193550.bd |
193550db |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{3} \cdot 5^{24} \cdot 7^{7} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$199080$ |
$144$ |
$3$ |
$6.844932198$ |
$1$ |
|
$0$ |
$89579520$ |
$3.909405$ |
$-123447440070716936162689/16876220703125000$ |
$0.98418$ |
$6.12015$ |
$[1, 0, 1, -1270736626, 17437334079148]$ |
\(y^2+xy+y=x^3-1270736626x+17437334079148\) |
3.4.0.a.1, 9.12.0.a.1, 105.8.0.?, 315.24.0.?, 4424.2.0.?, $\ldots$ |
$[(23080168/33, 5356463947/33)]$ |
193550.bd2 |
193550db1 |
193550.bd |
193550db |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{27} \cdot 5^{8} \cdot 7^{7} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$199080$ |
$144$ |
$3$ |
$6.844932198$ |
$1$ |
|
$0$ |
$9953280$ |
$2.810795$ |
$-1855878893569/1855560089600$ |
$0.96537$ |
$4.68539$ |
$[1, 0, 1, -313626, -2810796852]$ |
\(y^2+xy+y=x^3-313626x-2810796852\) |
3.4.0.a.1, 9.12.0.a.1, 105.8.0.?, 315.24.0.?, 4424.2.0.?, $\ldots$ |
$[(6423/2, 223573/2)]$ |
193550.bd3 |
193550db2 |
193550.bd |
193550db |
$3$ |
$9$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{9} \cdot 5^{12} \cdot 7^{9} \cdot 79^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$199080$ |
$144$ |
$3$ |
$2.281644066$ |
$1$ |
|
$2$ |
$29859840$ |
$3.360100$ |
$1352568769155071/1352899016000000$ |
$0.99572$ |
$5.22679$ |
$[1, 0, 1, 2822374, 75852627148]$ |
\(y^2+xy+y=x^3+2822374x+75852627148\) |
3.12.0.a.1, 105.24.0.?, 4424.2.0.?, 4977.36.0.?, 9480.24.0.?, $\ldots$ |
$[(6592, 613891)]$ |
193550.be1 |
193550ct1 |
193550.be |
193550ct |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{34} \cdot 5^{9} \cdot 7^{8} \cdot 79^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$26.66801356$ |
$1$ |
|
$0$ |
$107614080$ |
$4.073387$ |
$-42298759185902121413/107219563577344$ |
$0.98412$ |
$6.18139$ |
$[1, 0, 1, -1626944576, -25313875513202]$ |
\(y^2+xy+y=x^3-1626944576x-25313875513202\) |
20.2.0.a.1 |
$[(135729285687764113/1437963, 36406386161608233632249417/1437963)]$ |
193550.bf1 |
193550dg2 |
193550.bf |
193550dg |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( 2 \cdot 5^{6} \cdot 7^{6} \cdot 79^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$632$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$589824$ |
$1.287209$ |
$81182737/12482$ |
$0.85973$ |
$3.24845$ |
$[1, 1, 0, -11050, -387750]$ |
\(y^2+xy=x^3+x^2-11050x-387750\) |
2.3.0.a.1, 8.6.0.b.1, 316.6.0.?, 632.12.0.? |
$[ ]$ |
193550.bf2 |
193550dg1 |
193550.bf |
193550dg |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{2} \cdot 5^{6} \cdot 7^{6} \cdot 79 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$632$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$294912$ |
$0.940635$ |
$103823/316$ |
$0.80009$ |
$2.82024$ |
$[1, 1, 0, 1200, -32500]$ |
\(y^2+xy=x^3+x^2+1200x-32500\) |
2.3.0.a.1, 8.6.0.c.1, 158.6.0.?, 632.12.0.? |
$[ ]$ |
193550.bg1 |
193550dc1 |
193550.bg |
193550dc |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{5} \cdot 5^{3} \cdot 7^{10} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3160$ |
$2$ |
$0$ |
$1$ |
$49$ |
$7$ |
$0$ |
$6854400$ |
$2.564796$ |
$-30208039691551421/2528$ |
$0.96712$ |
$5.11236$ |
$[1, 1, 0, -21286115, -37808950675]$ |
\(y^2+xy=x^3+x^2-21286115x-37808950675\) |
3160.2.0.? |
$[ ]$ |
193550.bh1 |
193550dd1 |
193550.bh |
193550dd |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{2} \cdot 5^{4} \cdot 7^{11} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2212$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1013760$ |
$1.483881$ |
$-956818825/5311012$ |
$0.85153$ |
$3.38055$ |
$[1, 1, 0, -8600, -1002700]$ |
\(y^2+xy=x^3+x^2-8600x-1002700\) |
2212.2.0.? |
$[ ]$ |
193550.bi1 |
193550de1 |
193550.bi |
193550de |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{6} \cdot 5^{8} \cdot 7^{7} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2212$ |
$2$ |
$0$ |
$6.049714472$ |
$1$ |
|
$0$ |
$1105920$ |
$1.629246$ |
$-97325545/35392$ |
$0.76282$ |
$3.56782$ |
$[1, 1, 0, -34325, -3137875]$ |
\(y^2+xy=x^3+x^2-34325x-3137875\) |
2212.2.0.? |
$[(5554/5, 50207/5)]$ |
193550.bj1 |
193550df1 |
193550.bj |
193550df |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2 \cdot 5^{3} \cdot 7^{2} \cdot 79 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$3160$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$51456$ |
$-0.170352$ |
$15379/158$ |
$0.70694$ |
$1.73983$ |
$[1, 1, 0, 10, 50]$ |
\(y^2+xy=x^3+x^2+10x+50\) |
3160.2.0.? |
$[ ]$ |
193550.bk1 |
193550dh1 |
193550.bk |
193550dh |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{7} \cdot 5^{4} \cdot 7^{8} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$30.78551018$ |
$1$ |
|
$0$ |
$6193152$ |
$2.195496$ |
$-65201740749261225/495488$ |
$0.97009$ |
$4.66837$ |
$[1, -1, 0, -3512917, -2533374859]$ |
\(y^2+xy=x^3-x^2-3512917x-2533374859\) |
632.2.0.? |
$[(437311611735091/198162, 8962458221351601979489/198162)]$ |
193550.bl1 |
193550di1 |
193550.bl |
193550di |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2 \cdot 5^{8} \cdot 7^{8} \cdot 79^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11865600$ |
$2.448738$ |
$-612965578258665/611618$ |
$0.92743$ |
$4.81384$ |
$[1, -1, 0, -6338992, 6144560666]$ |
\(y^2+xy=x^3-x^2-6338992x+6144560666\) |
8.2.0.a.1 |
$[ ]$ |
193550.bm1 |
193550a1 |
193550.bm |
193550a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \cdot 79 \) |
\( - 2^{7} \cdot 5^{10} \cdot 7^{8} \cdot 79 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$632$ |
$2$ |
$0$ |
$15.27878810$ |
$1$ |
|
$0$ |
$30965760$ |
$3.000217$ |
$-65201740749261225/495488$ |
$0.97009$ |
$5.46164$ |
$[1, -1, 1, -87822930, -316759680303]$ |
\(y^2+xy+y=x^3-x^2-87822930x-316759680303\) |
632.2.0.? |
$[(42827975/47, 237290137943/47)]$ |