| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 187425.a1 |
187425q1 |
187425.a |
187425q |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 5^{2} \cdot 7^{9} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$1.040239965$ |
$1$ |
|
$10$ |
$276480$ |
$0.937138$ |
$14929920/5831$ |
$0.74598$ |
$2.85880$ |
$[0, 0, 1, -2205, -22724]$ |
\(y^2+y=x^3-2205x-22724\) |
714.2.0.? |
$[(56, 171), (-14, 73)]$ |
$1$ |
| 187425.b1 |
187425a1 |
187425.b |
187425a |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{8} \cdot 7^{7} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$0.867226639$ |
$1$ |
|
$16$ |
$3594240$ |
$2.149666$ |
$1411502080/3213$ |
$0.83106$ |
$4.30030$ |
$[0, 0, 1, -753375, 251193906]$ |
\(y^2+y=x^3-753375x+251193906\) |
714.2.0.? |
$[(350, 5512), (476, 661)]$ |
$1$ |
| 187425.c1 |
187425r1 |
187425.c |
187425r |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 5^{10} \cdot 7^{11} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$0.893643234$ |
$1$ |
|
$4$ |
$87091200$ |
$3.855663$ |
$470357606027980800/6896562077111$ |
$1.02878$ |
$5.91032$ |
$[0, 0, 1, -509079375, 4364692953906]$ |
\(y^2+y=x^3-509079375x+4364692953906\) |
714.2.0.? |
$[(15099, 346944)]$ |
$1$ |
| 187425.d1 |
187425e1 |
187425.d |
187425e |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{2} \cdot 7^{6} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1.386046719$ |
$1$ |
|
$4$ |
$1741824$ |
$1.718288$ |
$-5624320000/2255067$ |
$1.03348$ |
$3.66216$ |
$[0, 0, 1, -47775, -5229464]$ |
\(y^2+y=x^3-47775x-5229464\) |
6.2.0.a.1 |
$[(331, 3901)]$ |
$1$ |
| 187425.e1 |
187425f1 |
187425.e |
187425f |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{17} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1190$ |
$2$ |
$0$ |
$3.618367127$ |
$1$ |
|
$2$ |
$47443968$ |
$3.401012$ |
$-110470393399988224/284716796875$ |
$0.97379$ |
$5.53257$ |
$[0, 0, 1, -110209575, 446315576656]$ |
\(y^2+y=x^3-110209575x+446315576656\) |
1190.2.0.? |
$[(5215, 115762)]$ |
$1$ |
| 187425.f1 |
187425g1 |
187425.f |
187425g |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{19} \cdot 5^{10} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$3.897569089$ |
$1$ |
|
$2$ |
$22763520$ |
$3.143005$ |
$352558182400/189724437$ |
$0.97167$ |
$5.02012$ |
$[0, 0, 1, -13873125, 5265853906]$ |
\(y^2+y=x^3-13873125x+5265853906\) |
714.2.0.? |
$[(-2999, 141061)]$ |
$1$ |
| 187425.g1 |
187425m1 |
187425.g |
187425m |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{13} \cdot 5^{10} \cdot 7^{8} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$23143680$ |
$2.989620$ |
$954060800/632043$ |
$0.93184$ |
$4.85371$ |
$[0, 0, 1, 7074375, 2755522656]$ |
\(y^2+y=x^3+7074375x+2755522656\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.h1 |
187425b1 |
187425.h |
187425b |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{10} \cdot 5^{9} \cdot 7^{9} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1190$ |
$2$ |
$0$ |
$2.101903714$ |
$1$ |
|
$12$ |
$9584640$ |
$2.586872$ |
$-11977551872/472311$ |
$0.87295$ |
$4.61442$ |
$[0, 0, 1, -2627625, 1694366406]$ |
\(y^2+y=x^3-2627625x+1694366406\) |
1190.2.0.? |
$[(525, 21437), (1400, 27562)]$ |
$1$ |
| 187425.i1 |
187425h1 |
187425.i |
187425h |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{13} \cdot 5^{10} \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3306240$ |
$2.016666$ |
$954060800/632043$ |
$0.93184$ |
$3.89207$ |
$[0, 0, 1, 144375, -8033594]$ |
\(y^2+y=x^3+144375x-8033594\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.j1 |
187425i1 |
187425.j |
187425i |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{3} \cdot 17^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$3570$ |
$12$ |
$1$ |
$0.699575752$ |
$1$ |
|
$18$ |
$1105920$ |
$1.630089$ |
$110592/614125$ |
$1.19804$ |
$3.53086$ |
$[0, 0, 1, 1575, -2356594]$ |
\(y^2+y=x^3+1575x-2356594\) |
3.3.0.a.1, 21.6.0.a.1, 510.6.0.?, 1190.2.0.?, 3570.12.1.? |
$[(385, 7437), (135, 562)]$ |
$1$ |
| 187425.k1 |
187425j1 |
187425.k |
187425j |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{9} \cdot 7^{9} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$3570$ |
$12$ |
$1$ |
$3.301453918$ |
$1$ |
|
$2$ |
$7741440$ |
$2.603043$ |
$110592/614125$ |
$1.19804$ |
$4.49250$ |
$[0, 0, 1, 77175, 808311656]$ |
\(y^2+y=x^3+77175x+808311656\) |
3.3.0.a.1, 21.6.0.a.1, 510.6.0.?, 1190.2.0.?, 3570.12.1.? |
$[(-441, 26239)]$ |
$1$ |
| 187425.l1 |
187425s1 |
187425.l |
187425s |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{6} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1.403966558$ |
$1$ |
|
$4$ |
$1209600$ |
$1.566753$ |
$-110592/17$ |
$0.95016$ |
$3.54734$ |
$[0, 0, 1, -33075, 2604656]$ |
\(y^2+y=x^3-33075x+2604656\) |
102.2.0.? |
$[(126, 661)]$ |
$1$ |
| 187425.m1 |
187425o1 |
187425.m |
187425o |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{4} \cdot 7^{11} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$52254720$ |
$3.600254$ |
$470357606027980800/6896562077111$ |
$1.02878$ |
$5.65787$ |
$[0, 0, 1, -183268575, -942773678044]$ |
\(y^2+y=x^3-183268575x-942773678044\) |
714.2.0.? |
$[ ]$ |
$1$ |
| 187425.n1 |
187425k1 |
187425.n |
187425k |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{13} \cdot 5^{6} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$102$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4644864$ |
$2.249172$ |
$-8390176768/1821771$ |
$0.90870$ |
$4.20823$ |
$[0, 0, 1, -466725, 143920656]$ |
\(y^2+y=x^3-466725x+143920656\) |
102.2.0.? |
$[ ]$ |
$1$ |
| 187425.o1 |
187425l1 |
187425.o |
187425l |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{6} \cdot 5^{7} \cdot 7^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$170$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3265920$ |
$2.042583$ |
$200704/85$ |
$0.69717$ |
$3.94667$ |
$[0, 0, 1, -180075, -15231344]$ |
\(y^2+y=x^3-180075x-15231344\) |
170.2.0.? |
$[ ]$ |
$1$ |
| 187425.p1 |
187425n1 |
187425.p |
187425n |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{6} \cdot 5^{7} \cdot 7^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$170$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$466560$ |
$1.069630$ |
$200704/85$ |
$0.69717$ |
$2.98502$ |
$[0, 0, 1, -3675, 44406]$ |
\(y^2+y=x^3-3675x+44406\) |
170.2.0.? |
$[ ]$ |
$1$ |
| 187425.q1 |
187425c1 |
187425.q |
187425c |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{8} \cdot 7^{9} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$33868800$ |
$3.226830$ |
$67746795520/38336139$ |
$1.00402$ |
$5.09997$ |
$[0, 0, 1, -19165125, 4808377656]$ |
\(y^2+y=x^3-19165125x+4808377656\) |
714.2.0.? |
$[ ]$ |
$1$ |
| 187425.r1 |
187425d1 |
187425.r |
187425d |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{8} \cdot 7^{3} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$0.156257585$ |
$1$ |
|
$10$ |
$4838400$ |
$2.253876$ |
$67746795520/38336139$ |
$1.00402$ |
$4.13832$ |
$[0, 0, 1, -391125, -14018594]$ |
\(y^2+y=x^3-391125x-14018594\) |
714.2.0.? |
$[(-125, 5737)]$ |
$1$ |
| 187425.s1 |
187425p1 |
187425.s |
187425p |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{8} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$714$ |
$2$ |
$0$ |
$5.013017649$ |
$1$ |
|
$2$ |
$4147200$ |
$2.291161$ |
$14929920/5831$ |
$0.74598$ |
$4.19708$ |
$[0, 0, 1, -496125, 76692656]$ |
\(y^2+y=x^3-496125x+76692656\) |
714.2.0.? |
$[(-69, 10516)]$ |
$1$ |
| 187425.t1 |
187425u1 |
187425.t |
187425u |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{10} \cdot 7^{8} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9676800$ |
$2.617252$ |
$-20901888/180625$ |
$0.85308$ |
$4.50824$ |
$[0, 0, 1, -694575, 889345406]$ |
\(y^2+y=x^3-694575x+889345406\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.u1 |
187425t1 |
187425.u |
187425t |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{10} \cdot 7^{2} \cdot 17^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1382400$ |
$1.644299$ |
$-20901888/180625$ |
$0.85308$ |
$3.54659$ |
$[0, 0, 1, -14175, -2592844]$ |
\(y^2+y=x^3-14175x-2592844\) |
6.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.v1 |
187425v2 |
187425.v |
187425v |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{16} \cdot 5^{9} \cdot 7^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$2.487999667$ |
$1$ |
|
$6$ |
$7372800$ |
$2.684818$ |
$69375867029/1003833$ |
$0.95207$ |
$4.75366$ |
$[1, -1, 1, -4718930, -3894784428]$ |
\(y^2+xy+y=x^3-x^2-4718930x-3894784428\) |
2.3.0.a.1, 60.6.0.c.1, 170.6.0.?, 204.6.0.?, 1020.12.0.? |
$[(-1356, 3740)]$ |
$1$ |
| 187425.v2 |
187425v1 |
187425.v |
187425v |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{11} \cdot 5^{9} \cdot 7^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1020$ |
$12$ |
$0$ |
$4.975999334$ |
$1$ |
|
$5$ |
$3686400$ |
$2.338245$ |
$-24389/70227$ |
$1.02818$ |
$4.23078$ |
$[1, -1, 1, -33305, -165026928]$ |
\(y^2+xy+y=x^3-x^2-33305x-165026928\) |
2.3.0.a.1, 30.6.0.a.1, 204.6.0.?, 340.6.0.?, 1020.12.0.? |
$[(618, 6771)]$ |
$1$ |
| 187425.w1 |
187425w1 |
187425.w |
187425w |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{8} \cdot 7^{2} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1296000$ |
$1.810154$ |
$420314615/1419857$ |
$0.88863$ |
$3.68927$ |
$[1, -1, 1, 37570, -6174178]$ |
\(y^2+xy+y=x^3-x^2+37570x-6174178\) |
68.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.x1 |
187425z1 |
187425.x |
187425z |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{8} \cdot 7^{8} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$9072000$ |
$2.783108$ |
$420314615/1419857$ |
$0.88863$ |
$4.65091$ |
$[1, -1, 1, 1840945, 2114061072]$ |
\(y^2+xy+y=x^3-x^2+1840945x+2114061072\) |
68.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.y1 |
187425bb1 |
187425.y |
187425bb |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{10} \cdot 7^{3} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1105920$ |
$1.658400$ |
$-12325975/459$ |
$1.01416$ |
$3.69927$ |
$[1, -1, 1, -64805, -6534678]$ |
\(y^2+xy+y=x^3-x^2-64805x-6534678\) |
1428.2.0.? |
$[ ]$ |
$1$ |
| 187425.z1 |
187425bc1 |
187425.z |
187425bc |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{23} \cdot 5^{2} \cdot 7^{10} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$188.2811155$ |
$1$ |
|
$0$ |
$315302400$ |
$4.576073$ |
$-2771957867660775809911105/10785915553923$ |
$1.05697$ |
$7.04640$ |
$[1, -1, 1, -50532441665, -4372222805228428]$ |
\(y^2+xy+y=x^3-x^2-50532441665x-4372222805228428\) |
6.2.0.a.1 |
$[(252884754337267848130366791855363471035713526233840285086893527132972399663802786580/602067731520869816227468078135237424477, 119442922159126189406926767954965005621178452439347568493725697335064590928426880024949457193236179425025952639040680218258183/602067731520869816227468078135237424477)]$ |
$1$ |
| 187425.ba1 |
187425bx1 |
187425.ba |
187425bx |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 5^{7} \cdot 7^{3} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7140$ |
$12$ |
$0$ |
$1.611433680$ |
$1$ |
|
$15$ |
$98304$ |
$0.645240$ |
$328509/85$ |
$0.68906$ |
$2.59387$ |
$[1, -1, 1, -755, 6122]$ |
\(y^2+xy+y=x^3-x^2-755x+6122\) |
2.3.0.a.1, 84.6.0.?, 340.6.0.?, 3570.6.0.?, 7140.12.0.? |
$[(24, 25), (34, 120)]$ |
$1$ |
| 187425.ba2 |
187425bx2 |
187425.ba |
187425bx |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 5^{8} \cdot 7^{3} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7140$ |
$12$ |
$0$ |
$1.611433680$ |
$1$ |
|
$18$ |
$196608$ |
$0.991814$ |
$5000211/7225$ |
$0.79450$ |
$2.85134$ |
$[1, -1, 1, 1870, 37622]$ |
\(y^2+xy+y=x^3-x^2+1870x+37622\) |
2.3.0.a.1, 84.6.0.?, 340.6.0.?, 7140.12.0.? |
$[(4, 210), (-11, 130)]$ |
$1$ |
| 187425.bb1 |
187425bd3 |
187425.bb |
187425bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{7} \cdot 7^{10} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$1.768902232$ |
$1$ |
|
$6$ |
$14155776$ |
$3.040627$ |
$115650783909361/27072079335$ |
$0.92769$ |
$4.96703$ |
$[1, -1, 1, -11190605, 11121905022]$ |
\(y^2+xy+y=x^3-x^2-11190605x+11121905022\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 60.12.0.h.1, 136.12.0.?, $\ldots$ |
$[(4160, 189093)]$ |
$1$ |
| 187425.bb2 |
187425bd2 |
187425.bb |
187425bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{12} \cdot 5^{8} \cdot 7^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$7140$ |
$48$ |
$0$ |
$3.537804465$ |
$1$ |
|
$8$ |
$7077888$ |
$2.694054$ |
$4347507044161/258084225$ |
$0.89881$ |
$4.69679$ |
$[1, -1, 1, -3748730, -2645563728]$ |
\(y^2+xy+y=x^3-x^2-3748730x-2645563728\) |
2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0.a.1, 68.12.0-2.a.1.2, 420.24.0.?, $\ldots$ |
$[(-946, 7785)]$ |
$1$ |
| 187425.bb3 |
187425bd1 |
187425.bb |
187425bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{9} \cdot 5^{7} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$7.075608931$ |
$1$ |
|
$3$ |
$3538944$ |
$2.347481$ |
$4158523459441/16065$ |
$0.89697$ |
$4.69313$ |
$[1, -1, 1, -3693605, -2731338228]$ |
\(y^2+xy+y=x^3-x^2-3693605x-2731338228\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 120.12.0.?, 136.12.0.?, $\ldots$ |
$[(7170, 578951)]$ |
$1$ |
| 187425.bb4 |
187425bd4 |
187425.bb |
187425bd |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{18} \cdot 5^{10} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$7.075608931$ |
$1$ |
|
$2$ |
$14155776$ |
$3.040627$ |
$1833318007919/39525924375$ |
$0.95071$ |
$4.92141$ |
$[1, -1, 1, 2811145, -10924125978]$ |
\(y^2+xy+y=x^3-x^2+2811145x-10924125978\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 120.12.0.?, 136.12.0.?, $\ldots$ |
$[(28209, 4730895)]$ |
$1$ |
| 187425.bc1 |
187425by1 |
187425.bc |
187425by |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{3} \cdot 5^{7} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7140$ |
$12$ |
$0$ |
$5.805691370$ |
$1$ |
|
$3$ |
$688128$ |
$1.618195$ |
$328509/85$ |
$0.68906$ |
$3.55551$ |
$[1, -1, 1, -36980, -2025978]$ |
\(y^2+xy+y=x^3-x^2-36980x-2025978\) |
2.3.0.a.1, 84.6.0.?, 340.6.0.?, 3570.6.0.?, 7140.12.0.? |
$[(228, 1050)]$ |
$1$ |
| 187425.bc2 |
187425by2 |
187425.bc |
187425by |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{3} \cdot 5^{8} \cdot 7^{9} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$7140$ |
$12$ |
$0$ |
$2.902845685$ |
$1$ |
|
$4$ |
$1376256$ |
$1.964767$ |
$5000211/7225$ |
$0.79450$ |
$3.81299$ |
$[1, -1, 1, 91645, -13087728]$ |
\(y^2+xy+y=x^3-x^2+91645x-13087728\) |
2.3.0.a.1, 84.6.0.?, 340.6.0.?, 7140.12.0.? |
$[(380, 8556)]$ |
$1$ |
| 187425.bd1 |
187425bp1 |
187425.bd |
187425bp |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{23} \cdot 5^{2} \cdot 7^{4} \cdot 17^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$0.599181831$ |
$1$ |
|
$4$ |
$45043200$ |
$3.603119$ |
$-2771957867660775809911105/10785915553923$ |
$1.05697$ |
$6.08475$ |
$[1, -1, 1, -1031274320, 12747299912862]$ |
\(y^2+xy+y=x^3-x^2-1031274320x+12747299912862\) |
6.2.0.a.1 |
$[(16370, 493731)]$ |
$1$ |
| 187425.be1 |
187425be1 |
187425.be |
187425be |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{10} \cdot 7^{9} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$2.882359060$ |
$1$ |
|
$2$ |
$7741440$ |
$2.631355$ |
$-12325975/459$ |
$1.01416$ |
$4.66092$ |
$[1, -1, 1, -3175430, 2247745322]$ |
\(y^2+xy+y=x^3-x^2-3175430x+2247745322\) |
1428.2.0.? |
$[(-747, 65200)]$ |
$1$ |
| 187425.bf1 |
187425bf6 |
187425.bf |
187425bf |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{7} \cdot 5^{7} \cdot 7^{14} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$28560$ |
$192$ |
$1$ |
$14.26243265$ |
$1$ |
|
$0$ |
$37748736$ |
$3.448231$ |
$1375634265228629281/24990412335$ |
$1.04808$ |
$5.73993$ |
$[1, -1, 1, -255449480, -1571379853228]$ |
\(y^2+xy+y=x^3-x^2-255449480x-1571379853228\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 28.12.0-4.c.1.2, 48.24.0-8.n.1.3, $\ldots$ |
$[(-55973009/78, 3123497525/78)]$ |
$1$ |
| 187425.bf2 |
187425bf3 |
187425.bf |
187425bf |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{8} \cdot 5^{14} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$28560$ |
$192$ |
$1$ |
$7.131216326$ |
$1$ |
|
$0$ |
$18874368$ |
$3.101658$ |
$20751759537944401/418359375$ |
$0.95142$ |
$5.39449$ |
$[1, -1, 1, -63118355, 193023220772]$ |
\(y^2+xy+y=x^3-x^2-63118355x+193023220772\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 40.24.0-8.n.1.8, 48.24.0-8.n.1.5, $\ldots$ |
$[(18735/2, 71063/2)]$ |
$1$ |
| 187425.bf3 |
187425bf4 |
187425.bf |
187425bf |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{8} \cdot 5^{8} \cdot 7^{10} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$14280$ |
$192$ |
$1$ |
$7.131216326$ |
$1$ |
|
$2$ |
$18874368$ |
$3.101658$ |
$369543396484081/45120132225$ |
$1.10652$ |
$5.06271$ |
$[1, -1, 1, -16482605, -22874503228]$ |
\(y^2+xy+y=x^3-x^2-16482605x-22874503228\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.2, 28.24.0-4.b.1.2, 40.24.0-4.b.1.2, $\ldots$ |
$[(147165/4, 49427947/4)]$ |
$1$ |
| 187425.bf4 |
187425bf2 |
187425.bf |
187425bf |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{10} \cdot 5^{10} \cdot 7^{8} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.3 |
2Cs |
$14280$ |
$192$ |
$1$ |
$3.565608163$ |
$1$ |
|
$4$ |
$9437184$ |
$2.755085$ |
$5602762882081/716900625$ |
$0.98003$ |
$4.71768$ |
$[1, -1, 1, -4079480, 2799965522]$ |
\(y^2+xy+y=x^3-x^2-4079480x+2799965522\) |
2.6.0.a.1, 4.12.0.b.1, 24.24.0-4.b.1.3, 40.24.0-4.b.1.3, 56.24.0-4.b.1.5, $\ldots$ |
$[(1815, 36136)]$ |
$1$ |
| 187425.bf5 |
187425bf1 |
187425.bf |
187425bf |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{14} \cdot 5^{8} \cdot 7^{7} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$28560$ |
$192$ |
$1$ |
$1.782804081$ |
$1$ |
|
$5$ |
$4718592$ |
$2.408508$ |
$4733169839/19518975$ |
$0.87668$ |
$4.28413$ |
$[1, -1, 1, 385645, 228053522]$ |
\(y^2+xy+y=x^3-x^2+385645x+228053522\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.8, 80.24.0.?, $\ldots$ |
$[(114, 16480)]$ |
$1$ |
| 187425.bf6 |
187425bf5 |
187425.bf |
187425bf |
$6$ |
$8$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{7} \cdot 5^{7} \cdot 7^{8} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.5 |
2B |
$28560$ |
$192$ |
$1$ |
$14.26243265$ |
$1$ |
|
$0$ |
$37748736$ |
$3.448231$ |
$1145725929069119/5127181719135$ |
$0.96557$ |
$5.31298$ |
$[1, -1, 1, 24034270, -117683990728]$ |
\(y^2+xy+y=x^3-x^2+24034270x-117683990728\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 24.24.0-8.n.1.7, 28.12.0-4.c.1.1, $\ldots$ |
$[(22854885/52, 116139087559/52)]$ |
$1$ |
| 187425.bg1 |
187425ba1 |
187425.bg |
187425ba |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{4} \cdot 7^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$544320$ |
$1.334448$ |
$-60025/17$ |
$0.82134$ |
$3.29439$ |
$[1, -1, 1, -11255, 563672]$ |
\(y^2+xy+y=x^3-x^2-11255x+563672\) |
68.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.bh1 |
187425x1 |
187425.bh |
187425x |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{6} \cdot 5^{4} \cdot 7^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$77760$ |
$0.361493$ |
$-60025/17$ |
$0.82134$ |
$2.33274$ |
$[1, -1, 1, -230, -1578]$ |
\(y^2+xy+y=x^3-x^2-230x-1578\) |
68.2.0.a.1 |
$[ ]$ |
$1$ |
| 187425.bi1 |
187425bg1 |
187425.bi |
187425bg |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{12} \cdot 5^{10} \cdot 7^{10} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$6.722817420$ |
$1$ |
|
$2$ |
$17176320$ |
$3.217464$ |
$-12517433425/12393$ |
$1.00051$ |
$5.38642$ |
$[1, -1, 1, -61056680, 183804076572]$ |
\(y^2+xy+y=x^3-x^2-61056680x+183804076572\) |
68.2.0.a.1 |
$[(-8212, 366540)]$ |
$1$ |
| 187425.bj1 |
187425bq1 |
187425.bj |
187425bq |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{12} \cdot 5^{10} \cdot 7^{4} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$13.96536386$ |
$1$ |
|
$0$ |
$2453760$ |
$2.244511$ |
$-12517433425/12393$ |
$1.00051$ |
$4.42478$ |
$[1, -1, 1, -1246055, -535515928]$ |
\(y^2+xy+y=x^3-x^2-1246055x-535515928\) |
68.2.0.a.1 |
$[(14674875/73, 50051511847/73)]$ |
$1$ |
| 187425.bk1 |
187425bz1 |
187425.bk |
187425bz |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( - 3^{9} \cdot 5^{2} \cdot 7^{7} \cdot 17^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1428$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4976640$ |
$2.606709$ |
$-1995310715276835/9938999$ |
$0.96312$ |
$4.94282$ |
$[1, -1, 1, -10146170, 12442043422]$ |
\(y^2+xy+y=x^3-x^2-10146170x+12442043422\) |
1428.2.0.? |
$[ ]$ |
$1$ |
| 187425.bl1 |
187425bh3 |
187425.bl |
187425bh |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{8} \cdot 5^{7} \cdot 7^{7} \cdot 17^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$1.327503006$ |
$1$ |
|
$18$ |
$9437184$ |
$2.822132$ |
$530044731605089/26309115$ |
$0.93057$ |
$5.09242$ |
$[1, -1, 1, -18588380, 30850145372]$ |
\(y^2+xy+y=x^3-x^2-18588380x+30850145372\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 84.12.0.?, 140.12.0.?, $\ldots$ |
$[(2424, 4300), (2473, -404)]$ |
$1$ |
| 187425.bl2 |
187425bh4 |
187425.bl |
187425bh |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 17 \) |
\( 3^{14} \cdot 5^{7} \cdot 7^{10} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$5.310012024$ |
$1$ |
|
$14$ |
$9437184$ |
$2.822132$ |
$17032120495489/1339001685$ |
$0.90955$ |
$4.80926$ |
$[1, -1, 1, -5909630, -5138762128]$ |
\(y^2+xy+y=x^3-x^2-5909630x-5138762128\) |
2.3.0.a.1, 4.6.0.c.1, 84.12.0.?, 120.12.0.?, 170.6.0.?, $\ldots$ |
$[(-1272, 18496), (-1566, 17320)]$ |
$1$ |