⌂
→
Elliptic curves
→
$\Q$
→
185
Citation
·
Feedback
·
Hide Menu
Elliptic curves over $\Q$ of conductor 185
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over $\Q$
Elliptic curves over $\Q(\alpha)$
Genus 2 curves over $\Q$
Higher genus families
Abelian varieties over $\F_{q}$
Belyi maps
Fields
Number fields
$p$-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Abstract groups
Database
↑
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Elliptic curve labels
Congruent number curves
Stein-Watkins dataset
BHKSSW dataset
Refine search
Advanced search options
Conductor
prime
p-power
sq-free
divides
multiple of
Discriminant
j-invariant
Rank
Bad$\ p$
include
exclude
exactly
subset
Curves per isogeny class
Complex multiplication
Torsion
all
one
no potential CM
potential CM
CM field Q(sqrt(-1))
CM field Q(sqrt(-3))
CM field Q(sqrt(-7))
CM discriminant -3
CM discriminant -4
CM discriminant -7
CM discriminant -8
CM discriminant -11
CM discriminant -12
CM discriminant -16
CM discriminant -19
CM discriminant -27
CM discriminant -28
CM discriminant -43
CM discriminant -67
CM discriminant -163
trivial
order 4
order 8
order 12
ℤ/2ℤ
ℤ/3ℤ
ℤ/4ℤ
ℤ/5ℤ
ℤ/6ℤ
ℤ/7ℤ
ℤ/8ℤ
ℤ/9ℤ
ℤ/10ℤ
ℤ/12ℤ
ℤ/2ℤ⊕ℤ/2ℤ
ℤ/2ℤ⊕ℤ/4ℤ
ℤ/2ℤ⊕ℤ/6ℤ
ℤ/2ℤ⊕ℤ/8ℤ
Isogeny class degree
Cyclic isogeny degree
Isogeny class size
Integral points
Analytic order of Ш
$p\ $div$\ $|Ш|
include
exclude
exactly
subset
Regulator
Reduction
Faltings height
semistable
not semistable
potentially good
not potentially good
Galois image
Adelic level
Adelic index
Adelic genus
Nonmax$\ \ell$
include
exclude
exactly
subset
$abc$ quality
Szpiro ratio
Manin constant
Sort order
Select
Search again
Random curve
▲ conductor
rank
torsion
CM discriminant
regulator
analytic Ш
isogeny class size
isogeny class degree
integral points
modular degree
adelic level
adelic index
adelic genus
Faltings height
$abc$ quality
Szpiro ratio
columns to display
✓ LMFDB curve label
Cremona curve label
✓ LMFDB class label
Cremona class label
class size
class degree
✓ conductor
discriminant
✓ rank
✓ torsion
Qbar-end algebra
✓ CM discriminant
Sato-Tate group
semistable
potentially good
nonmaximal primes
ℓ-adic images
mod-ℓ images
adelic level
adelic index
adelic genus
regulator
analytic Ш
ш primes
integral points
modular degree
Faltings height
j-invariant
abc quality
szpiro ratio
Weierstrass coeffs
✓ Weierstrass equation
mod-m images
mw-generators
show all
Results (4 matches)
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
Label
Cremona label
Class
Cremona class
Class size
Class degree
Conductor
Discriminant
Rank
Torsion
$\textrm{End}^0(E_{\overline\Q})$
CM
Sato-Tate
Semistable
Potentially good
Nonmax $\ell$
$\ell$-adic images
mod-$\ell$ images
Adelic level
Adelic index
Adelic genus
Regulator
$Ш_{\textrm{an}}$
Ш primes
Integral points
Modular degree
Faltings height
j-invariant
$abc$ quality
Szpiro ratio
Weierstrass coefficients
Weierstrass equation
mod-$m$ images
MW-generators
185.a1
185a1
185.a
185a
$1$
$1$
\( 5 \cdot 37 \)
\( 5^{4} \cdot 37 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$74$
$2$
$0$
$0.114056704$
$1$
$6$
$48$
$-0.096473$
$422550360064/23125$
$0.92409$
$5.12792$
$[0, 1, 1, -156, 700]$
\(y^2+y=x^3+x^2-156x+700\)
74.2.0.?
$[(4, 12)]$
185.b1
185b1
185.b
185b
$1$
$1$
\( 5 \cdot 37 \)
\( 5^{2} \cdot 37 \)
$1$
$\mathsf{trivial}$
$\Q$
$\mathrm{SU}(2)$
✓
$74$
$2$
$0$
$0.110278967$
$1$
$6$
$8$
$-0.675385$
$16777216/925$
$0.94517$
$3.18667$
$[0, -1, 1, -5, 6]$
\(y^2+y=x^3-x^2-5x+6\)
74.2.0.?
$[(0, 2)]$
185.c1
185c1
185.c
185c
$2$
$2$
\( 5 \cdot 37 \)
\( 5 \cdot 37 \)
$1$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.12.0.22
2B
$1480$
$48$
$0$
$1.425265290$
$1$
$3$
$6$
$-0.797071$
$4826809/185$
$0.89280$
$2.94802$
$[1, 0, 1, -4, -3]$
\(y^2+xy+y=x^3-4x-3\)
2.3.0.a.1
,
4.6.0.b.1
,
8.12.0-4.b.1.2
, 370.6.0.?, 740.24.0.?, $\ldots$
$[(3, 2)]$
185.c2
185c2
185.c
185c
$2$
$2$
\( 5 \cdot 37 \)
\( - 5^{2} \cdot 37^{2} \)
$1$
$\Z/2\Z$
$\Q$
$\mathrm{SU}(2)$
✓
$2$
8.12.0.37
2B
$1480$
$48$
$0$
$0.712632645$
$1$
$6$
$12$
$-0.450497$
$357911/34225$
$0.88506$
$3.42685$
$[1, 0, 1, 1, -9]$
\(y^2+xy+y=x^3+x-9\)
2.3.0.a.1
,
4.6.0.a.1
,
8.12.0-4.a.1.1
, 740.12.0.?, 1480.48.0.?
$[(3, 3)]$
Download
displayed columns
for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV