Learn more

Refine search


Results (1-50 of 83 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
180918.a1 180918.a \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -333369, -81927941]$ \(y^2+xy=x^3-x^2-333369x-81927941\) 5.12.0.a.2, 152.2.0.?, 345.24.0.?, 760.24.1.?, 52440.48.1.? $[ ]$
180918.a2 180918.a \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -99, 389749]$ \(y^2+xy=x^3-x^2-99x+389749\) 5.12.0.a.1, 152.2.0.?, 345.24.0.?, 760.24.1.?, 52440.48.1.? $[ ]$
180918.b1 180918.b \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.551589398$ $[1, -1, 0, -722184, -240503626]$ \(y^2+xy=x^3-x^2-722184x-240503626\) 10488.2.0.? $[(2743, 134317)]$
180918.c1 180918.c \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.789677240$ $[1, -1, 0, 1371069, 417521061]$ \(y^2+xy=x^3-x^2+1371069x+417521061\) 4.2.0.a.1, 152.4.0.? $[(3042, 179397)]$
180918.d1 180918.d \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -57231, -4912947]$ \(y^2+xy=x^3-x^2-57231x-4912947\) 3496.2.0.? $[ ]$
180918.e1 180918.e \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -25836, 1604816]$ \(y^2+xy=x^3-x^2-25836x+1604816\) 3496.2.0.? $[ ]$
180918.f1 180918.f \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $20.21565886$ $[1, -1, 0, -220048758, -1256340606660]$ \(y^2+xy=x^3-x^2-220048758x-1256340606660\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 24.24.0-24.s.1.8, 184.24.0.?, $\ldots$ $[(1387519455/221, 42231758589285/221)]$
180918.f2 180918.f \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.053914716$ $[1, -1, 0, -26942598, 23575477356]$ \(y^2+xy=x^3-x^2-26942598x+23575477356\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 12.12.0-4.c.1.1, 24.24.0-24.y.1.7, $\ldots$ $[(-4985, 186849)]$
180918.f3 180918.f \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.10782943$ $[1, -1, 0, -13802238, -19480226220]$ \(y^2+xy=x^3-x^2-13802238x-19480226220\) 2.6.0.a.1, 8.12.0-2.a.1.2, 12.12.0-2.a.1.1, 24.24.0-24.b.1.5, 92.12.0.?, $\ldots$ $[(1036983/13, 775662672/13)]$
180918.f4 180918.f \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.053914716$ $[1, -1, 0, -90558, -829599084]$ \(y^2+xy=x^3-x^2-90558x-829599084\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.6, 12.12.0-4.c.1.2, 24.24.0-24.y.1.15, $\ldots$ $[(5535, 407376)]$
180918.g1 180918.g \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $3.165524821$ $[1, -1, 0, -11516958, 14765779030]$ \(y^2+xy=x^3-x^2-11516958x+14765779030\) 2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? $[(1685, 11060)]$
180918.g2 180918.g \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.582762410$ $[1, -1, 0, 52272, 699909196]$ \(y^2+xy=x^3-x^2+52272x+699909196\) 2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? $[(-822, 10462)]$
180918.h1 180918.h \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -479373, 77678765]$ \(y^2+xy=x^3-x^2-479373x+77678765\) 2.3.0.a.1, 24.6.0.a.1, 3496.6.0.?, 5244.6.0.?, 10488.12.0.? $[ ]$
180918.h2 180918.h \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 91947, 8549045]$ \(y^2+xy=x^3-x^2+91947x+8549045\) 2.3.0.a.1, 24.6.0.d.1, 2622.6.0.?, 3496.6.0.?, 10488.12.0.? $[ ]$
180918.i1 180918.i \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1403252478, 20232934025620]$ \(y^2+xy=x^3-x^2-1403252478x+20232934025620\) 2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? $[ ]$
180918.i2 180918.i \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -86931198, 321995080084]$ \(y^2+xy=x^3-x^2-86931198x+321995080084\) 2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? $[ ]$
180918.j1 180918.j \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $12.95458236$ $[1, -1, 0, -5550390, -5031687308]$ \(y^2+xy=x^3-x^2-5550390x-5031687308\) 4.2.0.a.1, 3496.4.0.? $[(32965724/91, 141376600646/91)]$
180918.k1 180918.k \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.789658927$ $[1, -1, 0, -5067, -55485]$ \(y^2+xy=x^3-x^2-5067x-55485\) 2.3.0.a.1, 24.6.0.j.1, 92.6.0.?, 552.12.0.? $[(79, 141)]$
180918.k2 180918.k \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $0.894829463$ $[1, -1, 0, 1143, -7047]$ \(y^2+xy=x^3-x^2+1143x-7047\) 2.3.0.a.1, 24.6.0.j.1, 46.6.0.a.1, 552.12.0.? $[(52, 411)]$
180918.l1 180918.l \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -2680542, 691169058]$ \(y^2+xy=x^3-x^2-2680542x+691169058\) 2.3.0.a.1, 24.6.0.j.1, 92.6.0.?, 552.12.0.? $[ ]$
180918.l2 180918.l \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 604548, 82113372]$ \(y^2+xy=x^3-x^2+604548x+82113372\) 2.3.0.a.1, 24.6.0.j.1, 46.6.0.a.1, 552.12.0.? $[ ]$
180918.m1 180918.m \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $4.771051517$ $[1, -1, 0, -665052, 210184272]$ \(y^2+xy=x^3-x^2-665052x+210184272\) 10488.2.0.? $[(7341/4, 63081/4)]$
180918.n1 180918.n \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $12.54542785$ $[1, -1, 0, -2037807, -1119158343]$ \(y^2+xy=x^3-x^2-2037807x-1119158343\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ $[(1052976/25, 222541149/25)]$
180918.n2 180918.n \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $25.09085570$ $[1, -1, 0, -1990197, -1173976497]$ \(y^2+xy=x^3-x^2-1990197x-1173976497\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ $[(274334224221/12775, 29745912700062819/12775)]$
180918.n3 180918.n \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.181809283$ $[1, -1, 0, -38187, 228933]$ \(y^2+xy=x^3-x^2-38187x+228933\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.d.1, 24.24.0.bx.1, $\ldots$ $[(1182, 39477)]$
180918.n4 180918.n \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $8.363618566$ $[1, -1, 0, 152253, 1714365]$ \(y^2+xy=x^3-x^2+152253x+1714365\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.a.1, 24.24.0.p.1, $\ldots$ $[(56331/7, 13924665/7)]$
180918.o1 180918.o \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -2936156409, 61238156414701]$ \(y^2+xy=x^3-x^2-2936156409x+61238156414701\) 4.2.0.a.1, 152.4.0.? $[ ]$
180918.p1 180918.p \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -677585619, -6788652006893]$ \(y^2+xy=x^3-x^2-677585619x-6788652006893\) 5.12.0.a.2, 345.24.0.?, 2280.24.0.?, 3496.2.0.?, 17480.24.1.?, $\ldots$ $[ ]$
180918.p2 180918.p \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1952109, 353313157]$ \(y^2+xy=x^3-x^2-1952109x+353313157\) 5.12.0.a.1, 345.24.0.?, 2280.24.0.?, 3496.2.0.?, 17480.24.1.?, $\ldots$ $[ ]$
180918.q1 180918.q \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $4.840848315$ $[1, -1, 0, -57231, -7151675]$ \(y^2+xy=x^3-x^2-57231x-7151675\) 10488.2.0.? $[(19763, 2768162)]$
180918.r1 180918.r \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -416835171, -3275524342283]$ \(y^2+xy=x^3-x^2-416835171x-3275524342283\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 456.24.0.?, 552.24.0.?, $\ldots$ $[ ]$
180918.r2 180918.r \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -26052291, -51174799403]$ \(y^2+xy=x^3-x^2-26052291x-51174799403\) 2.6.0.a.1, 8.12.0.b.1, 228.12.0.?, 276.12.0.?, 456.24.0.?, $\ldots$ $[ ]$
180918.r3 180918.r \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -25290531, -54308527691]$ \(y^2+xy=x^3-x^2-25290531x-54308527691\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.d.1, 276.12.0.?, 456.24.0.?, $\ldots$ $[ ]$
180918.r4 180918.r \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -1675971, -749943851]$ \(y^2+xy=x^3-x^2-1675971x-749943851\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.m.1, 114.6.0.?, 228.12.0.?, $\ldots$ $[ ]$
180918.s1 180918.s \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.979701750$ $[1, -1, 0, -17556, 896002]$ \(y^2+xy=x^3-x^2-17556x+896002\) 2.3.0.a.1, 24.6.0.a.1, 152.6.0.?, 228.6.0.?, 456.12.0.? $[(-63, 1354)]$
180918.s2 180918.s \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $3.959403501$ $[1, -1, 0, -1686, -2240]$ \(y^2+xy=x^3-x^2-1686x-2240\) 2.3.0.a.1, 24.6.0.d.1, 114.6.0.?, 152.6.0.?, 456.12.0.? $[(110, 1010)]$
180918.t1 180918.t \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -11126556, 35538564784]$ \(y^2+xy=x^3-x^2-11126556x+35538564784\) 10488.2.0.? $[ ]$
180918.u1 180918.u \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $25.69983499$ $[1, -1, 0, -1089429576, -13423171290688]$ \(y^2+xy=x^3-x^2-1089429576x-13423171290688\) 2.3.0.a.1, 24.6.0.a.1, 152.6.0.?, 228.6.0.?, 456.12.0.? $[(-235430622838019/106300, 588972004427554243471/106300)]$
180918.u2 180918.u \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\Z/2\Z$ $51.39966998$ $[1, -1, 0, -1080288456, -13666228186816]$ \(y^2+xy=x^3-x^2-1080288456x-13666228186816\) 2.3.0.a.1, 24.6.0.d.1, 114.6.0.?, 152.6.0.?, 456.12.0.? $[(7277949635762759684657872/8949989353, 18078970833520697758660107455435234392/8949989353)]$
180918.v1 180918.v \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $73.79507003$ $[1, -1, 0, -3051272628, -64873081357488]$ \(y^2+xy=x^3-x^2-3051272628x-64873081357488\) 3.4.0.a.1, 69.8.0-3.a.1.2, 456.8.0.?, 3496.2.0.?, 10488.16.0.? $[(-2893910085406371939896417582442127601/9525864729990615, 13781868137326238537307709135053921853828596099331438/9525864729990615)]$
180918.v2 180918.v \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $24.59835667$ $[1, -1, 0, -37750068, -88583608368]$ \(y^2+xy=x^3-x^2-37750068x-88583608368\) 3.4.0.a.1, 69.8.0-3.a.1.1, 456.8.0.?, 3496.2.0.?, 10488.16.0.? $[(-18204455995073/70671, 9128262743822176958/70671)]$
180918.w1 180918.w \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $46.06126133$ $[1, -1, 0, -13667343, -19443792403]$ \(y^2+xy=x^3-x^2-13667343x-19443792403\) 3496.2.0.? $[(-63354349080398119996747/5462399537, 181299036812907488368913777578010/5462399537)]$
180918.x1 180918.x \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 2592, -34992]$ \(y^2+xy=x^3-x^2+2592x-34992\) 4.2.0.a.1, 3496.4.0.? $[ ]$
180918.y1 180918.y \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $4.604546184$ $[1, -1, 1, -107222, 1382285]$ \(y^2+xy+y=x^3-x^2-107222x+1382285\) 152.2.0.? $[(-333, 445)]$
180918.z1 180918.z \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.232360201$ $[1, -1, 1, -562295624, 5120144627339]$ \(y^2+xy+y=x^3-x^2-562295624x+5120144627339\) 3496.2.0.? $[(13093, 42121)]$
180918.ba1 180918.ba \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -243094379, -1458786852421]$ \(y^2+xy+y=x^3-x^2-243094379x-1458786852421\) 3.4.0.a.1, 69.8.0-3.a.1.2, 76.2.0.?, 228.8.0.?, 5244.16.0.? $[ ]$
180918.ba2 180918.ba \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -3830324, -807406873]$ \(y^2+xy+y=x^3-x^2-3830324x-807406873\) 3.4.0.a.1, 69.8.0-3.a.1.1, 76.2.0.?, 228.8.0.?, 5244.16.0.? $[ ]$
180918.bb1 180918.bb \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -54639716, -155306114265]$ \(y^2+xy+y=x^3-x^2-54639716x-155306114265\) 152.2.0.? $[ ]$
180918.bc1 180918.bc \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.176573125$ $[1, -1, 1, -4826, 65305]$ \(y^2+xy+y=x^3-x^2-4826x+65305\) 152.2.0.? $[(-11, 347)]$
180918.bd1 180918.bd \( 2 \cdot 3^{2} \cdot 19 \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -158006, -24034049]$ \(y^2+xy+y=x^3-x^2-158006x-24034049\) 2.3.0.a.1, 24.6.0.a.1, 152.6.0.?, 228.6.0.?, 456.12.0.? $[ ]$
Next   displayed columns for results