Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
17787.a1 17787.a \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1673954, 834791726]$ \(y^2+y=x^3-x^2-1673954x+834791726\) 6.2.0.a.1 $[ ]$
17787.b1 17787.b \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $9.146335682$ $[0, -1, 1, -110392, -14092002]$ \(y^2+y=x^3-x^2-110392x-14092002\) 6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ $[(70812/13, 7932690/13)]$
17787.b2 17787.b \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.703564283$ $[0, -1, 1, -282, 2078]$ \(y^2+y=x^3-x^2-282x+2078\) 6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 546.168.9.?, $\ldots$ $[(-7, 60)]$
17787.c1 17787.c \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.872867822$ $[0, -1, 1, -13834, 249402]$ \(y^2+y=x^3-x^2-13834x+249402\) 42.2.0.a.1 $[(180, 1886)]$
17787.d1 17787.d \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 21740, 239740]$ \(y^2+y=x^3+x^2+21740x+239740\) 6.2.0.a.1 $[ ]$
17787.e1 17787.e \( 3 \cdot 7^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $0.106694808$ $[0, 1, 1, -282, -808]$ \(y^2+y=x^3+x^2-282x-808\) 42.2.0.a.1 $[(51, 346), (-15, 16)]$
17787.f1 17787.f \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.144772407$ $[0, 1, 1, -5409224, 4844375036]$ \(y^2+y=x^3+x^2-5409224x+4844375036\) 6.2.0.a.1, 13.28.0.a.2, 78.56.1.?, 91.84.2.?, 143.56.0.?, $\ldots$ $[(898, 26680)]$
17787.f2 17787.f \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $1.882041293$ $[0, 1, 1, -13834, -685184]$ \(y^2+y=x^3+x^2-13834x-685184\) 6.2.0.a.1, 13.28.0.a.1, 78.56.1.?, 91.84.2.?, 143.56.0.?, $\ldots$ $[(898, 26680)]$
17787.g1 17787.g \( 3 \cdot 7^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $0.139962635$ $[0, 1, 1, -34316, 2427002]$ \(y^2+y=x^3+x^2-34316x+2427002\) 42.2.0.a.1 $[(-47, 1984), (88, 310)]$
17787.h1 17787.h \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -34162, -2443556]$ \(y^2+y=x^3+x^2-34162x-2443556\) 6.2.0.a.1 $[ ]$
17787.i1 17787.i \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -73124, -6958066]$ \(y^2+y=x^3+x^2-73124x-6958066\) 42.2.0.a.1 $[ ]$
17787.j1 17787.j \( 3 \cdot 7^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $1.012017577$ $[1, 1, 1, -3088, 67178]$ \(y^2+xy+y=x^3+x^2-3088x+67178\) 132.2.0.? $[(28, 46), (94, 739)]$
17787.k1 17787.k \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $5.450460216$ $[1, 1, 1, -430823, -67411618]$ \(y^2+xy+y=x^3+x^2-430823x-67411618\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, $\ldots$ $[(-253, 5173)]$
17787.k2 17787.k \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $2.725230108$ $[1, 1, 1, 81612, -7354236]$ \(y^2+xy+y=x^3+x^2+81612x-7354236\) 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, $\ldots$ $[(3856, 238196)]$
17787.l1 17787.l \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -157781, -24194598]$ \(y^2+xy=x^3-157781x-24194598\) 4.2.0.a.1, 264.4.0.? $[ ]$
17787.m1 17787.m \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -21110328, 23058853929]$ \(y^2+xy=x^3-21110328x+23058853929\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.r.1, 28.12.0.l.1, 56.24.0.cb.1, $\ldots$ $[ ]$
17787.m2 17787.m \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 3998987, 2534499848]$ \(y^2+xy=x^3+3998987x+2534499848\) 2.3.0.a.1, 4.12.0.f.1, 14.6.0.b.1, 28.24.0.g.1, 88.24.0.?, $\ldots$ $[ ]$
17787.n1 17787.n \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -151313, -23496054]$ \(y^2+xy=x^3-151313x-23496054\) 132.2.0.? $[ ]$
17787.o1 17787.o \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -868722, 311273073]$ \(y^2+xy=x^3-868722x+311273073\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 56.12.0-4.c.1.5, 88.12.0.?, $\ldots$ $[ ]$
17787.o2 17787.o \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -68307, 2152800]$ \(y^2+xy=x^3-68307x+2152800\) 2.6.0.a.1, 12.12.0.a.1, 28.12.0-2.a.1.1, 44.12.0.b.1, 84.24.0.?, $\ldots$ $[ ]$
17787.o3 17787.o \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -38662, -2904637]$ \(y^2+xy=x^3-38662x-2904637\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 28.12.0-4.c.1.2, 66.6.0.a.1, $\ldots$ $[ ]$
17787.o4 17787.o \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 257788, 16827075]$ \(y^2+xy=x^3+257788x+16827075\) 2.3.0.a.1, 4.6.0.c.1, 22.6.0.a.1, 24.12.0.ba.1, 28.12.0-4.c.1.1, $\ldots$ $[ ]$
17787.p1 17787.p \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 146, -3739]$ \(y^2+xy=x^3+146x-3739\) 4.2.0.a.1, 264.4.0.? $[ ]$
17787.q1 17787.q \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.375074030$ $[0, -1, 1, -16529, -812428]$ \(y^2+y=x^3-x^2-16529x-812428\) 3.4.0.a.1, 42.8.0.b.1, 66.8.0-3.a.1.1, 231.8.0.?, 462.16.0.? $[(250, 3258)]$
17787.q2 17787.q \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $0.791691343$ $[0, -1, 1, -359, 923]$ \(y^2+y=x^3-x^2-359x+923\) 3.4.0.a.1, 42.8.0.b.1, 66.8.0-3.a.1.2, 231.8.0.?, 462.16.0.? $[(19, 24)]$
17787.r1 17787.r \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $6.448675946$ $[0, -1, 1, -2000049, 1089341483]$ \(y^2+y=x^3-x^2-2000049x+1089341483\) 3.4.0.a.1, 6.8.0-3.a.1.1, 21.8.0-3.a.1.2, 42.16.0-42.b.1.2 $[(3221/2, 4377/2)]$
17787.r2 17787.r \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $2.149558648$ $[0, -1, 1, -43479, -1054978]$ \(y^2+y=x^3-x^2-43479x-1054978\) 3.4.0.a.1, 6.8.0-3.a.1.2, 21.8.0-3.a.1.1, 42.16.0-42.b.1.1 $[(-40, 786)]$
17787.s1 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $26.22178070$ $[1, 1, 0, -4648459, -3859488002]$ \(y^2+xy=x^3+x^2-4648459x-3859488002\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 16.24.0.e.2, $\ldots$ $[(2627123879091/6970, 4245604813691436101/6970)]$
17787.s2 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $13.11089035$ $[1, 1, 0, -290644, -60344885]$ \(y^2+xy=x^3+x^2-290644x-60344885\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.1, 12.24.0.c.1, 24.48.0.j.2, $\ldots$ $[(5406099/10, 12542218637/10)]$
17787.s3 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.277722588$ $[1, 1, 0, -231354, 42475833]$ \(y^2+xy=x^3+x^2-231354x+42475833\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.1, 28.12.0.h.1, 44.12.0-4.c.1.1, $\ldots$ $[(-2209/2, 14067/2)]$
17787.s4 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $26.22178070$ $[1, 1, 0, -201709, -97857668]$ \(y^2+xy=x^3+x^2-201709x-97857668\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.24.0.bb.2, 12.12.0.g.1, $\ldots$ $[(2671726610691/7030, 4357555902872542499/7030)]$
17787.s5 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.555445177$ $[1, 1, 0, -23839, -313760]$ \(y^2+xy=x^3+x^2-23839x-313760\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.e.2, 24.48.0.w.2, 28.24.0.c.1, $\ldots$ $[(54060, 12542450)]$
17787.s6 17787.s \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\Z/2\Z$ $3.277722588$ $[1, 1, 0, 5806, -35097]$ \(y^2+xy=x^3+x^2+5806x-35097\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0.e.1, $\ldots$ $[(299/2, 6961/2)]$
17787.t1 17787.t \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 118457, 18006850]$ \(y^2+xy=x^3+x^2+118457x+18006850\) 132.2.0.? $[ ]$
17787.u1 17787.u \( 3 \cdot 7^{2} \cdot 11^{2} \) $2$ $\mathsf{trivial}$ $0.666407628$ $[1, 0, 1, 2417, -52153]$ \(y^2+xy+y=x^3+2417x-52153\) 132.2.0.? $[(43, 341), (535/2, 12529/2)]$
17787.v1 17787.v \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -19091504, 32183918435]$ \(y^2+xy+y=x^3-19091504x+32183918435\) 4.2.0.a.1, 24.4.0-4.a.1.1 $[ ]$
17787.w1 17787.w \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -26793275, -53383219837]$ \(y^2+xy+y=x^3-26793275x-53383219837\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.7, 28.12.0.h.1, 44.12.0-4.c.1.2, $\ldots$ $[ ]$
17787.w2 17787.w \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -1683960, -824401679]$ \(y^2+xy+y=x^3-1683960x-824401679\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.1, 24.48.0-24.i.1.25, 28.24.0.c.1, $\ldots$ $[ ]$
17787.w3 17787.w \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -231355, 23919641]$ \(y^2+xy+y=x^3-231355x+23919641\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0-4.b.1.3, 24.48.0-24.i.2.19, 56.48.0-56.m.1.13, $\ldots$ $[ ]$
17787.w4 17787.w \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -201710, 34840859]$ \(y^2+xy+y=x^3-201710x+34840859\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0-8.n.1.1, 48.48.0-48.e.1.24, 66.6.0.a.1, $\ldots$ $[ ]$
17787.w5 17787.w \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 183675, -2552337581]$ \(y^2+xy+y=x^3+183675x-2552337581\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 14.6.0.b.1, 16.24.0-8.n.1.6, $\ldots$ $[ ]$
17787.w6 17787.w \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 746930, 173401589]$ \(y^2+xy+y=x^3+746930x+173401589\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0-8.n.1.5, 24.24.0.bz.1, $\ldots$ $[ ]$
17787.x1 17787.x \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 17663, 4994273]$ \(y^2+xy+y=x^3+17663x+4994273\) 4.2.0.a.1, 24.4.0-4.a.1.1 $[ ]$
17787.y1 17787.y \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -13834, -622161]$ \(y^2+y=x^3-x^2-13834x-622161\) 6.2.0.a.1 $[ ]$
17787.z1 17787.z \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 69172, -25440955]$ \(y^2+y=x^3-x^2+69172x-25440955\) 6.2.0.a.1 $[ ]$
17787.ba1 17787.ba \( 3 \cdot 7^{2} \cdot 11^{2} \) $1$ $\mathsf{trivial}$ $35.36588208$ $[0, -1, 1, -1673954, -325258627]$ \(y^2+y=x^3-x^2-1673954x-325258627\) 42.2.0.a.1 $[(-1554825052694891/1216894, 29812392878170100234105/1216894)]$
17787.bb1 17787.bb \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 180, -115]$ \(y^2+y=x^3+x^2+180x-115\) 6.2.0.a.1 $[ ]$
17787.bc1 17787.bc \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -34162, 938515]$ \(y^2+y=x^3+x^2-34162x+938515\) 42.2.0.a.1 $[ ]$
17787.bd1 17787.bd \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -4152276, -3246949051]$ \(y^2+y=x^3+x^2-4152276x-3246949051\) 42.2.0.a.1 $[ ]$
17787.be1 17787.be \( 3 \cdot 7^{2} \cdot 11^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, 1412, 74575]$ \(y^2+y=x^3+x^2+1412x+74575\) 6.2.0.a.1 $[ ]$
Next   displayed columns for results