| Label | Cremona label | Class | Cremona class | Class size | Class degree | Conductor | Discriminant | Rank | Torsion | $\textrm{End}^0(E_{\overline\Q})$ | CM | Sato-Tate | Semistable | Potentially good | Nonmax $\ell$ | $\ell$-adic images | mod-$\ell$ images | Adelic level | Adelic index | Adelic genus | Regulator | $Ш_{\textrm{an}}$ | Ш primes | Integral points | Modular degree | Faltings height | j-invariant | $abc$ quality | Szpiro ratio | Weierstrass coefficients | Weierstrass equation | mod-$m$ images | MW-generators | 
      
      
              | 16704.a1 | 16704be1 | 16704.a | 16704be | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{13} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $21504$ | $0.798146$ | $-881395456/63423$ | $0.89711$ | $3.52113$ | $[0, 0, 0, -1812, -31480]$ | \(y^2=x^3-1812x-31480\) | 174.2.0.? | $[ ]$ | 
      
              | 16704.b1 | 16704cc1 | 16704.b | 16704cc | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{9} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1.128054246$ | $1$ |  | $2$ | $9216$ | $0.364775$ | $6912/29$ | $0.59389$ | $2.82746$ | $[0, 0, 0, 108, 1080]$ | \(y^2=x^3+108x+1080\) | 174.2.0.? | $[(-3, 27)]$ | 
      
              | 16704.c1 | 16704n1 | 16704.c | 16704n | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{9} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $9216$ | $0.364775$ | $6912/29$ | $0.59389$ | $2.82746$ | $[0, 0, 0, 108, -1080]$ | \(y^2=x^3+108x-1080\) | 174.2.0.? | $[ ]$ | 
      
              | 16704.d1 | 16704cx1 | 16704.d | 16704cx | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{13} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1.001508710$ | $1$ |  | $2$ | $21504$ | $0.798146$ | $-881395456/63423$ | $0.89711$ | $3.52113$ | $[0, 0, 0, -1812, 31480]$ | \(y^2=x^3-1812x+31480\) | 174.2.0.? | $[(-19, 243)]$ | 
      
              | 16704.e1 | 16704cv1 | 16704.e | 16704cv | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{29} \cdot 3^{27} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $3.203778858$ | $1$ |  | $2$ | $2365440$ | $3.109383$ | $-50577879066661513/621261297432576$ | $1.07229$ | $6.23566$ | $[0, 0, 0, -4437804, 16963904464]$ | \(y^2=x^3-4437804x+16963904464\) | 3.4.0.a.1, 24.8.0-3.a.1.3, 348.8.0.?, 696.16.0.? | $[(650, 119808)]$ | 
      
              | 16704.e2 | 16704cv2 | 16704.e | 16704cv | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{51} \cdot 3^{13} \cdot 29^{3}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $9.611336576$ | $1$ |  | $0$ | $7096320$ | $3.658688$ | $36079072622241241607/458176313589497856$ | $1.08854$ | $6.90524$ | $[0, 0, 0, 39652116, -439825302704]$ | \(y^2=x^3+39652116x-439825302704\) | 3.4.0.a.1, 24.8.0-3.a.1.4, 348.8.0.?, 696.16.0.? | $[(106684538/23, 1102432960512/23)]$ | 
      
              | 16704.f1 | 16704m1 | 16704.f | 16704m | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{23} \cdot 3^{9} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $46080$ | $1.112526$ | $9261/928$ | $1.54708$ | $3.76886$ | $[0, 0, 0, 756, -104976]$ | \(y^2=x^3+756x-104976\) | 696.2.0.? | $[ ]$ | 
      
              | 16704.g1 | 16704bb1 | 16704.g | 16704bb | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{20} \cdot 3^{6} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $116$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $10752$ | $0.686798$ | $-185193/116$ | $0.85122$ | $3.28393$ | $[0, 0, 0, -684, -9936]$ | \(y^2=x^3-684x-9936\) | 116.2.0.? | $[ ]$ | 
      
              | 16704.h1 | 16704cu1 | 16704.h | 16704cu | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{16} \cdot 3^{6} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $116$ | $2$ | $0$ | $1.112047801$ | $1$ |  | $4$ | $7680$ | $0.443427$ | $48668/29$ | $0.83955$ | $2.92848$ | $[0, 0, 0, 276, -304]$ | \(y^2=x^3+276x-304\) | 116.2.0.? | $[(2, 16)]$ | 
      
              | 16704.i1 | 16704l1 | 16704.i | 16704l | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{21} \cdot 3^{3} \cdot 29  \) | $2$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $0.544969186$ | $1$ |  | $14$ | $15360$ | $0.893917$ | $-12665630691/232$ | $1.09099$ | $4.01451$ | $[0, 0, 0, -9324, 346544]$ | \(y^2=x^3-9324x+346544\) | 3.4.0.a.1, 24.8.0-3.a.1.2, 174.8.0.?, 696.16.0.? | $[(70, 192), (52, 48)]$ | 
      
              | 16704.i2 | 16704l2 | 16704.i | 16704l | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{19} \cdot 3^{9} \cdot 29^{3}  \) | $2$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $0.544969186$ | $1$ |  | $14$ | $46080$ | $1.443224$ | $-970299/48778$ | $0.99506$ | $4.17810$ | $[0, 0, 0, -3564, 767664]$ | \(y^2=x^3-3564x+767664\) | 3.4.0.a.1, 24.8.0-3.a.1.1, 174.8.0.?, 696.16.0.? | $[(70, 928), (6, 864)]$ | 
      
              | 16704.j1 | 16704cs1 | 16704.j | 16704cs | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{17} \cdot 3^{7} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $0.639674298$ | $1$ |  | $4$ | $10240$ | $0.586358$ | $24334/87$ | $0.81241$ | $3.09760$ | $[0, 0, 0, 276, -4016]$ | \(y^2=x^3+276x-4016\) | 696.2.0.? | $[(26, 144)]$ | 
      
              | 16704.k1 | 16704z1 | 16704.k | 16704z | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{17} \cdot 3^{7} \cdot 29  \) | $2$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $0.412252714$ | $1$ |  | $18$ | $10240$ | $0.586358$ | $24334/87$ | $0.81241$ | $3.09760$ | $[0, 0, 0, 276, 4016]$ | \(y^2=x^3+276x+4016\) | 696.2.0.? | $[(22, 144), (4, 72)]$ | 
      
              | 16704.l1 | 16704ca1 | 16704.l | 16704ca | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{21} \cdot 3^{3} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $2.031767930$ | $1$ |  | $2$ | $15360$ | $0.893917$ | $-12665630691/232$ | $1.09099$ | $4.01451$ | $[0, 0, 0, -9324, -346544]$ | \(y^2=x^3-9324x-346544\) | 3.4.0.a.1, 24.8.0-3.a.1.4, 348.8.0.?, 696.16.0.? | $[(122, 576)]$ | 
      
              | 16704.l2 | 16704ca2 | 16704.l | 16704ca | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{19} \cdot 3^{9} \cdot 29^{3}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $0.677255976$ | $1$ |  | $4$ | $46080$ | $1.443224$ | $-970299/48778$ | $0.99506$ | $4.17810$ | $[0, 0, 0, -3564, -767664]$ | \(y^2=x^3-3564x-767664\) | 3.4.0.a.1, 24.8.0-3.a.1.3, 348.8.0.?, 696.16.0.? | $[(858, 25056)]$ | 
      
              | 16704.m1 | 16704ba1 | 16704.m | 16704ba | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{16} \cdot 3^{6} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $116$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $7680$ | $0.443427$ | $48668/29$ | $0.83955$ | $2.92848$ | $[0, 0, 0, 276, 304]$ | \(y^2=x^3+276x+304\) | 116.2.0.? | $[ ]$ | 
      
              | 16704.n1 | 16704ct1 | 16704.n | 16704ct | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{20} \cdot 3^{6} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $116$ | $2$ | $0$ | $0.909067158$ | $1$ |  | $4$ | $10752$ | $0.686798$ | $-185193/116$ | $0.85122$ | $3.28393$ | $[0, 0, 0, -684, 9936]$ | \(y^2=x^3-684x+9936\) | 116.2.0.? | $[(10, 64)]$ | 
      
              | 16704.o1 | 16704cb1 | 16704.o | 16704cb | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{23} \cdot 3^{9} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $1.975419358$ | $1$ |  | $2$ | $46080$ | $1.112526$ | $9261/928$ | $1.54708$ | $3.76886$ | $[0, 0, 0, 756, 104976]$ | \(y^2=x^3+756x+104976\) | 696.2.0.? | $[(0, 324)]$ | 
      
              | 16704.p1 | 16704bc1 | 16704.p | 16704bc | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{29} \cdot 3^{27} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $1$ | $4$ | $2$ | $0$ | $2365440$ | $3.109383$ | $-50577879066661513/621261297432576$ | $1.07229$ | $6.23566$ | $[0, 0, 0, -4437804, -16963904464]$ | \(y^2=x^3-4437804x-16963904464\) | 3.4.0.a.1, 24.8.0-3.a.1.1, 174.8.0.?, 696.16.0.? | $[ ]$ | 
      
              | 16704.p2 | 16704bc2 | 16704.p | 16704bc | $2$ | $3$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{51} \cdot 3^{13} \cdot 29^{3}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $3$ | 3.4.0.1 | 3B | $696$ | $16$ | $0$ | $1$ | $4$ | $2$ | $0$ | $7096320$ | $3.658688$ | $36079072622241241607/458176313589497856$ | $1.08854$ | $6.90524$ | $[0, 0, 0, 39652116, 439825302704]$ | \(y^2=x^3+39652116x+439825302704\) | 3.4.0.a.1, 24.8.0-3.a.1.2, 174.8.0.?, 696.16.0.? | $[ ]$ | 
      
              | 16704.q1 | 16704bq2 | 16704.q | 16704bq | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  2^{29} \cdot 3^{3} \cdot 29^{2}  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $1$ | $1$ |  | $1$ | $168960$ | $2.075443$ | $144091275020705979/1722368$ | $1.09275$ | $5.68543$ | $[0, 0, 0, -2097036, -1168845040]$ | \(y^2=x^3-2097036x-1168845040\) | 2.3.0.a.1, 24.6.0.a.1, 232.6.0.?, 348.6.0.?, 696.12.0.? | $[ ]$ | 
      
              | 16704.q2 | 16704bq1 | 16704.q | 16704bq | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{40} \cdot 3^{3} \cdot 29  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $1$ | $1$ |  | $1$ | $84480$ | $1.728868$ | $-35091039199419/121634816$ | $1.02166$ | $4.83035$ | $[0, 0, 0, -130956, -18295024]$ | \(y^2=x^3-130956x-18295024\) | 2.3.0.a.1, 24.6.0.d.1, 174.6.0.?, 232.6.0.?, 696.12.0.? | $[ ]$ | 
      
              | 16704.r1 | 16704d2 | 16704.r | 16704d | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  2^{17} \cdot 3^{3} \cdot 29^{2}  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $0.637765636$ | $1$ |  | $7$ | $7168$ | $0.514023$ | $1940598/841$ | $0.86613$ | $3.03987$ | $[0, 0, 0, -396, 1520]$ | \(y^2=x^3-396x+1520\) | 2.3.0.a.1, 24.6.0.a.1, 232.6.0.?, 348.6.0.?, 696.12.0.? | $[(-2, 48)]$ | 
      
              | 16704.r2 | 16704d1 | 16704.r | 16704d | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{16} \cdot 3^{3} \cdot 29  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $1.275531272$ | $1$ |  | $5$ | $3584$ | $0.167449$ | $37044/29$ | $0.73057$ | $2.56145$ | $[0, 0, 0, 84, 176]$ | \(y^2=x^3+84x+176\) | 2.3.0.a.1, 24.6.0.d.1, 174.6.0.?, 232.6.0.?, 696.12.0.? | $[(4, 24)]$ | 
      
              | 16704.s1 | 16704cp1 | 16704.s | 16704cp | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  2^{10} \cdot 3^{6} \cdot 29  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.6.0.3 | 2B | $696$ | $48$ | $0$ | $1.638348615$ | $1$ |  | $5$ | $5760$ | $0.253315$ | $5619712/29$ | $0.88985$ | $2.98917$ | $[0, 0, 0, -336, 2360]$ | \(y^2=x^3-336x+2360\) | 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.1, 58.6.0.a.1, 116.24.0.?, $\ldots$ | $[(1, 45)]$ | 
      
              | 16704.s2 | 16704cp2 | 16704.s | 16704cp | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{14} \cdot 3^{6} \cdot 29^{2}  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.6.0.5 | 2B | $696$ | $48$ | $0$ | $0.819174307$ | $1$ |  | $7$ | $11520$ | $0.599889$ | $-35152/841$ | $0.85096$ | $3.13768$ | $[0, 0, 0, -156, 4880]$ | \(y^2=x^3-156x+4880\) | 2.3.0.a.1, 4.6.0.a.1, 12.12.0-4.a.1.1, 116.12.0.?, 232.24.0.?, $\ldots$ | $[(-2, 72)]$ | 
      
              | 16704.t1 | 16704de1 | 16704.t | 16704de | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{13} \cdot 29^{3}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $43008$ | $1.289396$ | $1192310528/53338743$ | $1.01314$ | $3.98595$ | $[0, 0, 0, 2004, -301624]$ | \(y^2=x^3+2004x-301624\) | 174.2.0.? | $[ ]$ | 
      
              | 16704.u1 | 16704co1 | 16704.u | 16704co | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{21} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $3.953254521$ | $1$ |  | $2$ | $46080$ | $1.460522$ | $-5802287872/416118303$ | $1.03444$ | $4.19939$ | $[0, 0, 0, -3396, 851384]$ | \(y^2=x^3-3396x+851384\) | 174.2.0.? | $[(-35, 963)]$ | 
      
              | 16704.v1 | 16704v1 | 16704.v | 16704v | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{9} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $6144$ | $0.374561$ | $-562432/783$ | $0.80037$ | $2.87848$ | $[0, 0, 0, -156, -1384]$ | \(y^2=x^3-156x-1384\) | 174.2.0.? | $[ ]$ | 
      
              | 16704.w1 | 16704u1 | 16704.w | 16704u | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{21} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $46080$ | $1.460522$ | $-5802287872/416118303$ | $1.03444$ | $4.19939$ | $[0, 0, 0, -3396, -851384]$ | \(y^2=x^3-3396x-851384\) | 174.2.0.? | $[ ]$ | 
      
              | 16704.x1 | 16704cn1 | 16704.x | 16704cn | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{9} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $0.827662887$ | $1$ |  | $2$ | $6144$ | $0.374561$ | $-562432/783$ | $0.80037$ | $2.87848$ | $[0, 0, 0, -156, 1384]$ | \(y^2=x^3-156x+1384\) | 174.2.0.? | $[(5, 27)]$ | 
      
              | 16704.y1 | 16704bj1 | 16704.y | 16704bj | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{13} \cdot 29^{3}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $0.754314963$ | $1$ |  | $2$ | $43008$ | $1.289396$ | $1192310528/53338743$ | $1.01314$ | $3.98595$ | $[0, 0, 0, 2004, 301624]$ | \(y^2=x^3+2004x+301624\) | 174.2.0.? | $[(365, 7047)]$ | 
      
              | 16704.z1 | 16704w1 | 16704.z | 16704w | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  2^{10} \cdot 3^{6} \cdot 29  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.6.0.3 | 2B | $696$ | $48$ | $0$ | $1$ | $1$ |  | $1$ | $5760$ | $0.253315$ | $5619712/29$ | $0.88985$ | $2.98917$ | $[0, 0, 0, -336, -2360]$ | \(y^2=x^3-336x-2360\) | 2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.1, 58.6.0.a.1, 116.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 16704.z2 | 16704w2 | 16704.z | 16704w | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{14} \cdot 3^{6} \cdot 29^{2}  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 4.6.0.5 | 2B | $696$ | $48$ | $0$ | $1$ | $1$ |  | $1$ | $11520$ | $0.599889$ | $-35152/841$ | $0.85096$ | $3.13768$ | $[0, 0, 0, -156, -4880]$ | \(y^2=x^3-156x-4880\) | 2.3.0.a.1, 4.6.0.a.1, 12.12.0-4.a.1.1, 116.12.0.?, 232.24.0.?, $\ldots$ | $[ ]$ | 
      
              | 16704.ba1 | 16704c2 | 16704.ba | 16704c | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  2^{29} \cdot 3^{3} \cdot 29^{2}  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $2.394658475$ | $1$ |  | $3$ | $168960$ | $2.075443$ | $144091275020705979/1722368$ | $1.09275$ | $5.68543$ | $[0, 0, 0, -2097036, 1168845040]$ | \(y^2=x^3-2097036x+1168845040\) | 2.3.0.a.1, 24.6.0.a.1, 232.6.0.?, 348.6.0.?, 696.12.0.? | $[(3678, 207872)]$ | 
      
              | 16704.ba2 | 16704c1 | 16704.ba | 16704c | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{40} \cdot 3^{3} \cdot 29  \) | $1$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $4.789316951$ | $1$ |  | $3$ | $84480$ | $1.728868$ | $-35091039199419/121634816$ | $1.02166$ | $4.83035$ | $[0, 0, 0, -130956, 18295024]$ | \(y^2=x^3-130956x+18295024\) | 2.3.0.a.1, 24.6.0.d.1, 174.6.0.?, 232.6.0.?, 696.12.0.? | $[(-124, 5712)]$ | 
      
              | 16704.bb1 | 16704bp2 | 16704.bb | 16704bp | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  2^{17} \cdot 3^{3} \cdot 29^{2}  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $1$ | $1$ |  | $1$ | $7168$ | $0.514023$ | $1940598/841$ | $0.86613$ | $3.03987$ | $[0, 0, 0, -396, -1520]$ | \(y^2=x^3-396x-1520\) | 2.3.0.a.1, 24.6.0.a.1, 232.6.0.?, 348.6.0.?, 696.12.0.? | $[ ]$ | 
      
              | 16704.bb2 | 16704bp1 | 16704.bb | 16704bp | $2$ | $2$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{16} \cdot 3^{3} \cdot 29  \) | $0$ | $\Z/2\Z$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $2$ | 2.3.0.1 | 2B | $696$ | $12$ | $0$ | $1$ | $1$ |  | $1$ | $3584$ | $0.167449$ | $37044/29$ | $0.73057$ | $2.56145$ | $[0, 0, 0, 84, -176]$ | \(y^2=x^3+84x-176\) | 2.3.0.a.1, 24.6.0.d.1, 174.6.0.?, 232.6.0.?, 696.12.0.? | $[ ]$ | 
      
              | 16704.bc1 | 16704bo1 | 16704.bc | 16704bo | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{15} \cdot 3^{3} \cdot 29  \) | $2$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $0.385915314$ | $1$ |  | $16$ | $3584$ | $0.146365$ | $-157464/29$ | $0.79925$ | $2.66741$ | $[0, 0, 0, -108, 496]$ | \(y^2=x^3-108x+496\) | 696.2.0.? | $[(6, 8), (-10, 24)]$ | 
      
              | 16704.bd1 | 16704dc1 | 16704.bd | 16704dc | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{15} \cdot 3^{11} \cdot 29  \) | $2$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $0.560926161$ | $1$ |  | $16$ | $15360$ | $0.837970$ | $2863288/7047$ | $0.86773$ | $3.39757$ | $[0, 0, 0, 852, 17264]$ | \(y^2=x^3+852x+17264\) | 696.2.0.? | $[(70, 648), (-11, 81)]$ | 
      
              | 16704.be1 | 16704db2 | 16704.be | 16704db | $2$ | $7$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{19} \cdot 3^{7} \cdot 29^{7}  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $7$ | 7.24.0.2 | 7B.6.3 | $4872$ | $96$ | $2$ | $1$ | $1$ |  | $0$ | $301056$ | $2.566673$ | $-30526075007211889/103499257854$ | $1.03180$ | $5.86539$ | $[0, 0, 0, -3750348, -2803651184]$ | \(y^2=x^3-3750348x-2803651184\) | 7.24.0.a.2, 168.48.0.?, 696.2.0.?, 812.48.0.?, 4872.96.2.? | $[ ]$ | 
      
              | 16704.be2 | 16704db1 | 16704.be | 16704db | $2$ | $7$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{25} \cdot 3^{13} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $7$ | 7.24.0.1 | 7B.6.1 | $4872$ | $96$ | $2$ | $1$ | $1$ |  | $0$ | $43008$ | $1.593718$ | $-117649/8118144$ | $1.24364$ | $4.36397$ | $[0, 0, 0, -588, 1895056]$ | \(y^2=x^3-588x+1895056\) | 7.24.0.a.1, 168.48.0.?, 696.2.0.?, 812.48.0.?, 4872.96.2.? | $[ ]$ | 
      
              | 16704.bf1 | 16704cj1 | 16704.bf | 16704cj | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{6} \cdot 3^{6} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $116$ | $2$ | $0$ | $1.922920835$ | $1$ |  | $2$ | $1920$ | $-0.144396$ | $-64/29$ | $0.93799$ | $2.21875$ | $[0, 0, 0, -3, 56]$ | \(y^2=x^3-3x+56\) | 116.2.0.? | $[(-4, 2)]$ | 
      
              | 16704.bg1 | 16704ci1 | 16704.bg | 16704ci | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{6} \cdot 3^{6} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $116$ | $2$ | $0$ | $4.171685533$ | $1$ |  | $0$ | $1920$ | $-0.144396$ | $-64/29$ | $0.93799$ | $2.21875$ | $[0, 0, 0, -3, -56]$ | \(y^2=x^3-3x-56\) | 116.2.0.? | $[(40/3, 116/3)]$ | 
      
              | 16704.bh1 | 16704bh2 | 16704.bh | 16704bh | $2$ | $7$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{19} \cdot 3^{7} \cdot 29^{7}  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $7$ | 7.24.0.2 | 7B.6.3 | $4872$ | $96$ | $2$ | $0.390102489$ | $1$ |  | $4$ | $301056$ | $2.566673$ | $-30526075007211889/103499257854$ | $1.03180$ | $5.86539$ | $[0, 0, 0, -3750348, 2803651184]$ | \(y^2=x^3-3750348x+2803651184\) | 7.24.0.a.2, 168.48.0.?, 406.48.0.?, 696.2.0.?, 4872.96.2.? | $[(1237, 7569)]$ | 
      
              | 16704.bh2 | 16704bh1 | 16704.bh | 16704bh | $2$ | $7$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{25} \cdot 3^{13} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  | $7$ | 7.24.0.1 | 7B.6.1 | $4872$ | $96$ | $2$ | $2.730717426$ | $1$ |  | $2$ | $43008$ | $1.593718$ | $-117649/8118144$ | $1.24364$ | $4.36397$ | $[0, 0, 0, -588, -1895056]$ | \(y^2=x^3-588x-1895056\) | 7.24.0.a.1, 168.48.0.?, 406.48.0.?, 696.2.0.?, 4872.96.2.? | $[(229, 3159)]$ | 
      
              | 16704.bi1 | 16704da1 | 16704.bi | 16704da | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{15} \cdot 3^{11} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $15360$ | $0.837970$ | $2863288/7047$ | $0.86773$ | $3.39757$ | $[0, 0, 0, 852, -17264]$ | \(y^2=x^3+852x-17264\) | 696.2.0.? | $[ ]$ | 
      
              | 16704.bj1 | 16704bn1 | 16704.bj | 16704bn | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{15} \cdot 3^{3} \cdot 29  \) | $0$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $696$ | $2$ | $0$ | $1$ | $1$ |  | $0$ | $3584$ | $0.146365$ | $-157464/29$ | $0.79925$ | $2.66741$ | $[0, 0, 0, -108, -496]$ | \(y^2=x^3-108x-496\) | 696.2.0.? | $[ ]$ | 
      
              | 16704.bk1 | 16704bg1 | 16704.bk | 16704bg | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{11} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $2.234812943$ | $1$ |  | $2$ | $10240$ | $0.554232$ | $10976000/7047$ | $0.89158$ | $3.05802$ | $[0, 0, 0, 420, -1096]$ | \(y^2=x^3+420x-1096\) | 174.2.0.? | $[(13, 81)]$ | 
      
              | 16704.bl1 | 16704bf1 | 16704.bl | 16704bf | $1$ | $1$ | \(  2^{6} \cdot 3^{2} \cdot 29  \) | \(  - 2^{10} \cdot 3^{7} \cdot 29  \) | $1$ | $\mathsf{trivial}$ | $\Q$ |  | $\mathrm{SU}(2)$ |  |  |  |  |  | $174$ | $2$ | $0$ | $1.054382694$ | $1$ |  | $2$ | $3072$ | $0.182689$ | $32000/87$ | $0.73713$ | $2.59214$ | $[0, 0, 0, 60, -344]$ | \(y^2=x^3+60x-344\) | 174.2.0.? | $[(5, 9)]$ |