Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
165825.a1 |
165825a1 |
165825.a |
165825a |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{36} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$10.11533966$ |
$1$ |
|
$2$ |
$122204160$ |
$3.798203$ |
$344981836779052322816/41728985197282986075$ |
$1.02635$ |
$5.73074$ |
$[0, 0, 1, 32875575, 1046428197156]$ |
\(y^2+y=x^3+32875575x+1046428197156\) |
134.2.0.? |
$[(239411, 117181003)]$ |
165825.b1 |
165825b1 |
165825.b |
165825b |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{6} \cdot 11^{4} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2064384$ |
$1.893808$ |
$7382979842048/4403471083$ |
$0.96263$ |
$3.81726$ |
$[0, 0, 1, 91275, 1857906]$ |
\(y^2+y=x^3+91275x+1857906\) |
134.2.0.? |
$[ ]$ |
165825.c1 |
165825c1 |
165825.c |
165825c |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{23} \cdot 5^{6} \cdot 11^{3} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$4422$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$14805504$ |
$2.886272$ |
$-98311244861358051328/11516332315851$ |
$0.99932$ |
$5.18219$ |
$[0, 0, 1, -21634275, 38735180406]$ |
\(y^2+y=x^3-21634275x+38735180406\) |
4422.2.0.? |
$[ ]$ |
165825.d1 |
165825d1 |
165825.d |
165825d |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{12} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1880064$ |
$1.719635$ |
$-8569817657344/147750075$ |
$0.85549$ |
$3.83211$ |
$[0, 0, 1, -95925, -11604344]$ |
\(y^2+y=x^3-95925x-11604344\) |
134.2.0.? |
$[ ]$ |
165825.e1 |
165825g3 |
165825.e |
165825g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{7} \cdot 5^{14} \cdot 11 \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$5.182738059$ |
$1$ |
|
$0$ |
$4521984$ |
$2.270393$ |
$181938238527312721/863671875$ |
$0.92162$ |
$4.65864$ |
$[1, -1, 1, -2656130, 1666837622]$ |
\(y^2+xy+y=x^3-x^2-2656130x+1666837622\) |
2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 120.12.0.?, 660.12.0.?, $\ldots$ |
$[(3807/2, 635/2)]$ |
165825.e2 |
165825g2 |
165825.e |
165825g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{8} \cdot 5^{10} \cdot 11^{2} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$44220$ |
$48$ |
$0$ |
$2.591369029$ |
$1$ |
|
$6$ |
$2260992$ |
$1.923820$ |
$46659888108001/3055325625$ |
$0.87012$ |
$3.97067$ |
$[1, -1, 1, -168755, 25170122]$ |
\(y^2+xy+y=x^3-x^2-168755x+25170122\) |
2.6.0.a.1, 44.12.0.b.1, 60.12.0-2.a.1.1, 660.24.0.?, 804.12.0.?, $\ldots$ |
$[(333, 2245)]$ |
165825.e3 |
165825g1 |
165825.e |
165825g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{7} \cdot 5^{8} \cdot 11^{4} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1.295684514$ |
$1$ |
|
$7$ |
$1130496$ |
$1.577248$ |
$337298881681/73571025$ |
$0.83244$ |
$3.56050$ |
$[1, -1, 1, -32630, -1782628]$ |
\(y^2+xy+y=x^3-x^2-32630x-1782628\) |
2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 88.12.0.?, 402.6.0.?, $\ldots$ |
$[(-126, 625)]$ |
165825.e4 |
165825g4 |
165825.e |
165825g |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{10} \cdot 5^{8} \cdot 11 \cdot 67^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$88440$ |
$48$ |
$0$ |
$1.295684514$ |
$1$ |
|
$4$ |
$4521984$ |
$2.270393$ |
$26997300089999/448866220275$ |
$0.91579$ |
$4.20159$ |
$[1, -1, 1, 140620, 106845122]$ |
\(y^2+xy+y=x^3-x^2+140620x+106845122\) |
2.3.0.a.1, 4.6.0.c.1, 22.6.0.a.1, 44.12.0.g.1, 60.12.0-4.c.1.1, $\ldots$ |
$[(75, 10816)]$ |
165825.f1 |
165825l2 |
165825.f |
165825l |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{7} \cdot 11^{4} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$0.527596302$ |
$1$ |
|
$8$ |
$1548288$ |
$1.961172$ |
$827142723603/328617245$ |
$0.97814$ |
$3.90936$ |
$[1, -1, 1, -132005, 10368622]$ |
\(y^2+xy+y=x^3-x^2-132005x+10368622\) |
2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[(-26, 3725)]$ |
165825.f2 |
165825l1 |
165825.f |
165825l |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1.055192604$ |
$1$ |
|
$7$ |
$774144$ |
$1.614599$ |
$548749795203/202675$ |
$0.82746$ |
$3.87522$ |
$[1, -1, 1, -115130, 15059872]$ |
\(y^2+xy+y=x^3-x^2-115130x+15059872\) |
2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[(224, 575)]$ |
165825.g1 |
165825e1 |
165825.g |
165825e |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{5} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$2948$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1026000$ |
$1.651318$ |
$144672215/10790417$ |
$0.85836$ |
$3.58677$ |
$[1, -1, 1, 7195, 2654822]$ |
\(y^2+xy+y=x^3-x^2+7195x+2654822\) |
2948.2.0.? |
$[ ]$ |
165825.h1 |
165825n2 |
165825.h |
165825n |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{14} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1990656$ |
$2.164185$ |
$13870708507683/3166796875$ |
$0.86634$ |
$4.14396$ |
$[1, -1, 1, -337880, -58737878]$ |
\(y^2+xy+y=x^3-x^2-337880x-58737878\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.h2 |
165825n1 |
165825.h |
165825n |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$995328$ |
$1.817610$ |
$501891267123/30861875$ |
$0.82811$ |
$3.86779$ |
$[1, -1, 1, -111755, 13622122]$ |
\(y^2+xy+y=x^3-x^2-111755x+13622122\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.i1 |
165825m2 |
165825.i |
165825m |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$2211840$ |
$2.128574$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$4.66732$ |
$[1, -1, 1, -2750105, -1754695728]$ |
\(y^2+xy+y=x^3-x^2-2750105x-1754695728\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.i2 |
165825m1 |
165825.i |
165825m |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{14} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1105920$ |
$1.782001$ |
$1333433581670763/3166796875$ |
$0.89630$ |
$3.97539$ |
$[1, -1, 1, -171980, -27351978]$ |
\(y^2+xy+y=x^3-x^2-171980x-27351978\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.j1 |
165825o1 |
165825.j |
165825o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{10} \cdot 11^{4} \cdot 67^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$5.778726943$ |
$1$ |
|
$3$ |
$4866048$ |
$2.736084$ |
$16072263521196147/2752169426875$ |
$1.00699$ |
$4.73097$ |
$[1, -1, 1, -3548855, 2160114022]$ |
\(y^2+xy+y=x^3-x^2-3548855x+2160114022\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(464, 24530)]$ |
165825.j2 |
165825o2 |
165825.j |
165825o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{9} \cdot 5^{8} \cdot 11^{2} \cdot 67^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$11.55745388$ |
$1$ |
|
$0$ |
$9732096$ |
$3.082657$ |
$106251939163685853/273636606061225$ |
$1.03455$ |
$4.99116$ |
$[1, -1, 1, 6660520, 12287814022]$ |
\(y^2+xy+y=x^3-x^2+6660520x+12287814022\) |
2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? |
$[(431111/7, 295909790/7)]$ |
165825.k1 |
165825h3 |
165825.k |
165825h |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{7} \cdot 5^{7} \cdot 11^{8} \cdot 67 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8040$ |
$48$ |
$0$ |
$4.125416491$ |
$1$ |
|
$12$ |
$2457600$ |
$2.344379$ |
$20106118884162961/215430675405$ |
$0.96970$ |
$4.47537$ |
$[1, -1, 1, -1274630, 549057872]$ |
\(y^2+xy+y=x^3-x^2-1274630x+549057872\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.ba.1, 120.24.0.?, $\ldots$ |
$[(975, 14758), (84, 20995)]$ |
165825.k2 |
165825h2 |
165825.k |
165825h |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{8} \cdot 5^{8} \cdot 11^{4} \cdot 67^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$4020$ |
$48$ |
$0$ |
$4.125416491$ |
$1$ |
|
$22$ |
$1228800$ |
$1.997805$ |
$28993860495361/14787776025$ |
$0.89152$ |
$3.93108$ |
$[1, -1, 1, -144005, -7209628]$ |
\(y^2+xy+y=x^3-x^2-144005x-7209628\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.a.1, 60.24.0-20.a.1.1, 268.12.0.?, $\ldots$ |
$[(774, 18175), (-62, 1246)]$ |
165825.k3 |
165825h1 |
165825.k |
165825h |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{7} \cdot 5^{10} \cdot 11^{2} \cdot 67 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8040$ |
$48$ |
$0$ |
$4.125416491$ |
$1$ |
|
$11$ |
$614400$ |
$1.651232$ |
$15107691357361/15200625$ |
$0.85988$ |
$3.87684$ |
$[1, -1, 1, -115880, -15140878]$ |
\(y^2+xy+y=x^3-x^2-115880x-15140878\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.ba.1, 60.12.0-4.c.1.2, $\ldots$ |
$[(-192, 46), (534, 8395)]$ |
165825.k4 |
165825h4 |
165825.k |
165825h |
$4$ |
$4$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{10} \cdot 5^{7} \cdot 11^{2} \cdot 67^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$8040$ |
$48$ |
$0$ |
$4.125416491$ |
$1$ |
|
$12$ |
$2457600$ |
$2.344379$ |
$1500297830724239/987505684605$ |
$0.91979$ |
$4.25943$ |
$[1, -1, 1, 536620, -56214628]$ |
\(y^2+xy+y=x^3-x^2+536620x-56214628\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 20.12.0.h.1, 60.24.0-20.h.1.2, $\ldots$ |
$[(609, 21970), (153, 5350)]$ |
165825.l1 |
165825f1 |
165825.l |
165825f |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{13} \cdot 5^{8} \cdot 11^{5} \cdot 67^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$132$ |
$2$ |
$0$ |
$0.316996660$ |
$1$ |
|
$6$ |
$4569600$ |
$2.642189$ |
$5525932941095/1581109012593$ |
$1.01344$ |
$4.57696$ |
$[1, -1, 1, 242320, 1019805572]$ |
\(y^2+xy+y=x^3-x^2+242320x+1019805572\) |
132.2.0.? |
$[(294, 33265)]$ |
165825.m1 |
165825q2 |
165825.m |
165825q |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{10} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$430080$ |
$1.287374$ |
$5292585633483/5066875$ |
$0.88219$ |
$3.51534$ |
$[1, -1, 1, -27230, -1721228]$ |
\(y^2+xy+y=x^3-x^2-27230x-1721228\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.m2 |
165825q1 |
165825.m |
165825q |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{8} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$215040$ |
$0.940802$ |
$2444008923/1234475$ |
$0.83115$ |
$2.87630$ |
$[1, -1, 1, -2105, -12728]$ |
\(y^2+xy+y=x^3-x^2-2105x-12728\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.n1 |
165825i2 |
165825.n |
165825i |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{12} \cdot 5^{7} \cdot 11 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$0.878321560$ |
$1$ |
|
$8$ |
$737280$ |
$1.700500$ |
$4011342040369/179986455$ |
$0.84986$ |
$3.76650$ |
$[1, -1, 1, -74480, 7532772]$ |
\(y^2+xy+y=x^3-x^2-74480x+7532772\) |
2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? |
$[(284, 2895)]$ |
165825.n2 |
165825i1 |
165825.n |
165825i |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$1.756643121$ |
$1$ |
|
$7$ |
$368640$ |
$1.353926$ |
$19443408769/5472225$ |
$0.91817$ |
$3.32308$ |
$[1, -1, 1, -12605, -387228]$ |
\(y^2+xy+y=x^3-x^2-12605x-387228\) |
2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? |
$[(-36, 155)]$ |
165825.o1 |
165825p2 |
165825.o |
165825p |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{6} \cdot 11 \cdot 67^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$5455872$ |
$2.701374$ |
$27977904161173539/995042203859$ |
$0.95838$ |
$4.77709$ |
$[1, -1, 1, -4269080, 3290163922]$ |
\(y^2+xy+y=x^3-x^2-4269080x+3290163922\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.o2 |
165825p1 |
165825.o |
165825p |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{6} \cdot 11^{2} \cdot 67^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2727936$ |
$2.354801$ |
$27254324376836019/36392323$ |
$1.00208$ |
$4.77491$ |
$[1, -1, 1, -4231955, 3351939922]$ |
\(y^2+xy+y=x^3-x^2-4231955x+3351939922\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[ ]$ |
165825.p1 |
165825j1 |
165825.p |
165825j |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{13} \cdot 5^{6} \cdot 11^{4} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$804$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1161216$ |
$1.823748$ |
$-6570725617/2145331089$ |
$0.95204$ |
$3.76009$ |
$[1, -1, 1, -8780, -7525528]$ |
\(y^2+xy+y=x^3-x^2-8780x-7525528\) |
804.2.0.? |
$[ ]$ |
165825.q1 |
165825k1 |
165825.q |
165825k |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1.719862220$ |
$1$ |
|
$2$ |
$51840$ |
$0.249638$ |
$-744385/8107$ |
$0.74264$ |
$2.18972$ |
$[1, -1, 1, -50, -588]$ |
\(y^2+xy+y=x^3-x^2-50x-588\) |
134.2.0.? |
$[(50, 321)]$ |
165825.r1 |
165825r1 |
165825.r |
165825r |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{8} \cdot 5^{4} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$0.623735933$ |
$1$ |
|
$4$ |
$106752$ |
$0.698398$ |
$819200/72963$ |
$0.84034$ |
$2.63551$ |
$[0, 0, 1, 150, -8744]$ |
\(y^2+y=x^3+150x-8744\) |
134.2.0.? |
$[(40, 247)]$ |
165825.s1 |
165825v1 |
165825.s |
165825v |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{24} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1513728$ |
$1.894484$ |
$-1891233955840/3140817904323$ |
$1.04240$ |
$3.83079$ |
$[0, 0, 1, -6780, 11513011]$ |
\(y^2+y=x^3-6780x+11513011\) |
134.2.0.? |
$[ ]$ |
165825.t1 |
165825s1 |
165825.t |
165825s |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3536640$ |
$2.562744$ |
$-62565106708480000/14362045027$ |
$0.99926$ |
$4.83768$ |
$[0, 0, 1, -5441250, 4886323906]$ |
\(y^2+y=x^3-5441250x+4886323906\) |
134.2.0.? |
$[ ]$ |
165825.u1 |
165825w1 |
165825.u |
165825w |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$2.157686619$ |
$1$ |
|
$2$ |
$35712$ |
$0.328920$ |
$-163840000/8107$ |
$0.85163$ |
$2.39685$ |
$[0, 0, 1, -300, -2084]$ |
\(y^2+y=x^3-300x-2084\) |
134.2.0.? |
$[(76, 643)]$ |
165825.v1 |
165825x3 |
165825.v |
165825x |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{7} \cdot 5^{6} \cdot 11^{9} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$66330$ |
$144$ |
$3$ |
$1.221563668$ |
$1$ |
|
$2$ |
$3359232$ |
$2.510311$ |
$-439308781656997888/473947485891$ |
$1.03256$ |
$4.73214$ |
$[0, 0, 1, -3563400, 2591489281]$ |
\(y^2+y=x^3-3563400x+2591489281\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 603.36.0.?, $\ldots$ |
$[(1081, 1633)]$ |
165825.v2 |
165825x1 |
165825.v |
165825x |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{15} \cdot 5^{6} \cdot 11 \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$66330$ |
$144$ |
$3$ |
$10.99407302$ |
$1$ |
|
$0$ |
$373248$ |
$1.411699$ |
$-2258403328/14506371$ |
$0.90148$ |
$3.35140$ |
$[0, 0, 1, -6150, -645719]$ |
\(y^2+y=x^3-6150x-645719\) |
3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 603.36.0.?, $\ldots$ |
$[(125941/29, 32632304/29)]$ |
165825.v3 |
165825x2 |
165825.v |
165825x |
$3$ |
$9$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{9} \cdot 5^{6} \cdot 11^{3} \cdot 67^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$66330$ |
$144$ |
$3$ |
$3.664691006$ |
$1$ |
|
$2$ |
$1119744$ |
$1.961006$ |
$1580352929792/10808519931$ |
$1.01300$ |
$3.88713$ |
$[0, 0, 1, 54600, 16151656]$ |
\(y^2+y=x^3+54600x+16151656\) |
3.12.0.a.1, 15.24.0-3.a.1.1, 603.36.0.?, 3015.72.0.?, 4422.24.1.?, $\ldots$ |
$[(334, 8464)]$ |
165825.w1 |
165825t1 |
165825.w |
165825t |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$6.000395049$ |
$1$ |
|
$0$ |
$178560$ |
$1.133638$ |
$-163840000/8107$ |
$0.85163$ |
$3.20032$ |
$[0, 0, 1, -7500, -260469]$ |
\(y^2+y=x^3-7500x-260469\) |
134.2.0.? |
$[(3209/4, 160645/4)]$ |
165825.x1 |
165825y1 |
165825.x |
165825y |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 11^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$707328$ |
$1.758024$ |
$-62565106708480000/14362045027$ |
$0.99926$ |
$4.03421$ |
$[0, 0, 1, -217650, 39090591]$ |
\(y^2+y=x^3-217650x+39090591\) |
134.2.0.? |
$[ ]$ |
165825.y1 |
165825z1 |
165825.y |
165825z |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{8} \cdot 5^{10} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$7.067333574$ |
$1$ |
|
$0$ |
$533760$ |
$1.503117$ |
$819200/72963$ |
$0.84034$ |
$3.43897$ |
$[0, 0, 1, 3750, -1092969]$ |
\(y^2+y=x^3+3750x-1092969\) |
134.2.0.? |
$[(6761/8, 355253/8)]$ |
165825.z1 |
165825u1 |
165825.z |
165825u |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{24} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7568640$ |
$2.699203$ |
$-1891233955840/3140817904323$ |
$1.04240$ |
$4.63426$ |
$[0, 0, 1, -169500, 1439126406]$ |
\(y^2+y=x^3-169500x+1439126406\) |
134.2.0.? |
$[ ]$ |
165825.ba1 |
165825bh2 |
165825.ba |
165825bh |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{7} \cdot 11^{4} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$516096$ |
$1.411867$ |
$827142723603/328617245$ |
$0.97814$ |
$3.36091$ |
$[1, -1, 0, -14667, -379134]$ |
\(y^2+xy=x^3-x^2-14667x-379134\) |
2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[ ]$ |
165825.ba2 |
165825bh1 |
165825.ba |
165825bh |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$258048$ |
$1.065292$ |
$548749795203/202675$ |
$0.82746$ |
$3.32677$ |
$[1, -1, 0, -12792, -553509]$ |
\(y^2+xy=x^3-x^2-12792x-553509\) |
2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[ ]$ |
165825.bb1 |
165825ba1 |
165825.bb |
165825ba |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$5.368487214$ |
$1$ |
|
$0$ |
$259200$ |
$1.054358$ |
$-744385/8107$ |
$0.74264$ |
$2.99318$ |
$[1, -1, 0, -1242, -74709]$ |
\(y^2+xy=x^3-x^2-1242x-74709\) |
134.2.0.? |
$[(1374/5, 14583/5)]$ |
165825.bc1 |
165825bj2 |
165825.bc |
165825bj |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$11.58643427$ |
$1$ |
|
$0$ |
$6635520$ |
$2.677879$ |
$5452398641302220763/30861875$ |
$0.94624$ |
$5.21577$ |
$[1, -1, 0, -24750942, 47401535591]$ |
\(y^2+xy=x^3-x^2-24750942x+47401535591\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(544391/2, 400857059/2)]$ |
165825.bc2 |
165825bj1 |
165825.bc |
165825bj |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{9} \cdot 5^{14} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$5.793217135$ |
$1$ |
|
$3$ |
$3317760$ |
$2.331306$ |
$1333433581670763/3166796875$ |
$0.89630$ |
$4.52384$ |
$[1, -1, 0, -1547817, 740051216]$ |
\(y^2+xy=x^3-x^2-1547817x+740051216\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(136064, 50119468)]$ |
165825.bd1 |
165825bi2 |
165825.bd |
165825bi |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{14} \cdot 11^{2} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$4.049385755$ |
$1$ |
|
$2$ |
$663552$ |
$1.614878$ |
$13870708507683/3166796875$ |
$0.86634$ |
$3.59551$ |
$[1, -1, 0, -37542, 2187991]$ |
\(y^2+xy=x^3-x^2-37542x+2187991\) |
2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(18, 1223)]$ |
165825.bd2 |
165825bi1 |
165825.bd |
165825bi |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{3} \cdot 5^{10} \cdot 11 \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$8844$ |
$12$ |
$0$ |
$8.098771510$ |
$1$ |
|
$1$ |
$331776$ |
$1.268303$ |
$501891267123/30861875$ |
$0.82811$ |
$3.31934$ |
$[1, -1, 0, -12417, -500384]$ |
\(y^2+xy=x^3-x^2-12417x-500384\) |
2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? |
$[(-2700/7, 50378/7)]$ |
165825.be1 |
165825bb2 |
165825.be |
165825bb |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{8} \cdot 5^{7} \cdot 11 \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$466944$ |
$1.504137$ |
$2912566550041/2222055$ |
$0.84611$ |
$3.73987$ |
$[1, -1, 0, -66942, 6678841]$ |
\(y^2+xy=x^3-x^2-66942x+6678841\) |
2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? |
$[ ]$ |
165825.be2 |
165825bb1 |
165825.be |
165825bb |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) |
\( 3^{7} \cdot 5^{8} \cdot 11^{2} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$44220$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$233472$ |
$1.157564$ |
$1263214441/608025$ |
$0.78854$ |
$3.09561$ |
$[1, -1, 0, -5067, 58216]$ |
\(y^2+xy=x^3-x^2-5067x+58216\) |
2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? |
$[ ]$ |