Learn more

Refine search


Results (1-50 of 68 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
165825.a1 165825.a \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $10.11533966$ $[0, 0, 1, 32875575, 1046428197156]$ \(y^2+y=x^3+32875575x+1046428197156\) 134.2.0.? $[(239411, 117181003)]$
165825.b1 165825.b \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 91275, 1857906]$ \(y^2+y=x^3+91275x+1857906\) 134.2.0.? $[ ]$
165825.c1 165825.c \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -21634275, 38735180406]$ \(y^2+y=x^3-21634275x+38735180406\) 4422.2.0.? $[ ]$
165825.d1 165825.d \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -95925, -11604344]$ \(y^2+y=x^3-95925x-11604344\) 134.2.0.? $[ ]$
165825.e1 165825.e \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $5.182738059$ $[1, -1, 1, -2656130, 1666837622]$ \(y^2+xy+y=x^3-x^2-2656130x+1666837622\) 2.3.0.a.1, 4.6.0.c.1, 88.12.0.?, 120.12.0.?, 660.12.0.?, $\ldots$ $[(3807/2, 635/2)]$
165825.e2 165825.e \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.591369029$ $[1, -1, 1, -168755, 25170122]$ \(y^2+xy+y=x^3-x^2-168755x+25170122\) 2.6.0.a.1, 44.12.0.b.1, 60.12.0-2.a.1.1, 660.24.0.?, 804.12.0.?, $\ldots$ $[(333, 2245)]$
165825.e3 165825.e \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $1.295684514$ $[1, -1, 1, -32630, -1782628]$ \(y^2+xy+y=x^3-x^2-32630x-1782628\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 88.12.0.?, 402.6.0.?, $\ldots$ $[(-126, 625)]$
165825.e4 165825.e \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $1.295684514$ $[1, -1, 1, 140620, 106845122]$ \(y^2+xy+y=x^3-x^2+140620x+106845122\) 2.3.0.a.1, 4.6.0.c.1, 22.6.0.a.1, 44.12.0.g.1, 60.12.0-4.c.1.1, $\ldots$ $[(75, 10816)]$
165825.f1 165825.f \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $0.527596302$ $[1, -1, 1, -132005, 10368622]$ \(y^2+xy+y=x^3-x^2-132005x+10368622\) 2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? $[(-26, 3725)]$
165825.f2 165825.f \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $1.055192604$ $[1, -1, 1, -115130, 15059872]$ \(y^2+xy+y=x^3-x^2-115130x+15059872\) 2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[(224, 575)]$
165825.g1 165825.g \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 7195, 2654822]$ \(y^2+xy+y=x^3-x^2+7195x+2654822\) 2948.2.0.? $[ ]$
165825.h1 165825.h \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -337880, -58737878]$ \(y^2+xy+y=x^3-x^2-337880x-58737878\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.h2 165825.h \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -111755, 13622122]$ \(y^2+xy+y=x^3-x^2-111755x+13622122\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.i1 165825.i \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2750105, -1754695728]$ \(y^2+xy+y=x^3-x^2-2750105x-1754695728\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.i2 165825.i \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -171980, -27351978]$ \(y^2+xy+y=x^3-x^2-171980x-27351978\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.j1 165825.j \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $5.778726943$ $[1, -1, 1, -3548855, 2160114022]$ \(y^2+xy+y=x^3-x^2-3548855x+2160114022\) 2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? $[(464, 24530)]$
165825.j2 165825.j \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $11.55745388$ $[1, -1, 1, 6660520, 12287814022]$ \(y^2+xy+y=x^3-x^2+6660520x+12287814022\) 2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? $[(431111/7, 295909790/7)]$
165825.k1 165825.k \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $2$ $\Z/2\Z$ $4.125416491$ $[1, -1, 1, -1274630, 549057872]$ \(y^2+xy+y=x^3-x^2-1274630x+549057872\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0.ba.1, 120.24.0.?, $\ldots$ $[(975, 14758), (84, 20995)]$
165825.k2 165825.k \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $2$ $\Z/2\Z\oplus\Z/2\Z$ $4.125416491$ $[1, -1, 1, -144005, -7209628]$ \(y^2+xy+y=x^3-x^2-144005x-7209628\) 2.6.0.a.1, 12.12.0-2.a.1.1, 20.12.0.a.1, 60.24.0-20.a.1.1, 268.12.0.?, $\ldots$ $[(774, 18175), (-62, 1246)]$
165825.k3 165825.k \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $2$ $\Z/2\Z$ $4.125416491$ $[1, -1, 1, -115880, -15140878]$ \(y^2+xy+y=x^3-x^2-115880x-15140878\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0.ba.1, 60.12.0-4.c.1.2, $\ldots$ $[(-192, 46), (534, 8395)]$
165825.k4 165825.k \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $2$ $\Z/2\Z$ $4.125416491$ $[1, -1, 1, 536620, -56214628]$ \(y^2+xy+y=x^3-x^2+536620x-56214628\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 20.12.0.h.1, 60.24.0-20.h.1.2, $\ldots$ $[(609, 21970), (153, 5350)]$
165825.l1 165825.l \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $0.316996660$ $[1, -1, 1, 242320, 1019805572]$ \(y^2+xy+y=x^3-x^2+242320x+1019805572\) 132.2.0.? $[(294, 33265)]$
165825.m1 165825.m \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -27230, -1721228]$ \(y^2+xy+y=x^3-x^2-27230x-1721228\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.m2 165825.m \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2105, -12728]$ \(y^2+xy+y=x^3-x^2-2105x-12728\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.n1 165825.n \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $0.878321560$ $[1, -1, 1, -74480, 7532772]$ \(y^2+xy+y=x^3-x^2-74480x+7532772\) 2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? $[(284, 2895)]$
165825.n2 165825.n \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $1.756643121$ $[1, -1, 1, -12605, -387228]$ \(y^2+xy+y=x^3-x^2-12605x-387228\) 2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? $[(-36, 155)]$
165825.o1 165825.o \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4269080, 3290163922]$ \(y^2+xy+y=x^3-x^2-4269080x+3290163922\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.o2 165825.o \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4231955, 3351939922]$ \(y^2+xy+y=x^3-x^2-4231955x+3351939922\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[ ]$
165825.p1 165825.p \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -8780, -7525528]$ \(y^2+xy+y=x^3-x^2-8780x-7525528\) 804.2.0.? $[ ]$
165825.q1 165825.q \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $1.719862220$ $[1, -1, 1, -50, -588]$ \(y^2+xy+y=x^3-x^2-50x-588\) 134.2.0.? $[(50, 321)]$
165825.r1 165825.r \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $0.623735933$ $[0, 0, 1, 150, -8744]$ \(y^2+y=x^3+150x-8744\) 134.2.0.? $[(40, 247)]$
165825.s1 165825.s \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -6780, 11513011]$ \(y^2+y=x^3-6780x+11513011\) 134.2.0.? $[ ]$
165825.t1 165825.t \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -5441250, 4886323906]$ \(y^2+y=x^3-5441250x+4886323906\) 134.2.0.? $[ ]$
165825.u1 165825.u \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $2.157686619$ $[0, 0, 1, -300, -2084]$ \(y^2+y=x^3-300x-2084\) 134.2.0.? $[(76, 643)]$
165825.v1 165825.v \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $1.221563668$ $[0, 0, 1, -3563400, 2591489281]$ \(y^2+y=x^3-3563400x+2591489281\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.2, 45.24.0-9.a.1.1, 603.36.0.?, $\ldots$ $[(1081, 1633)]$
165825.v2 165825.v \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $10.99407302$ $[0, 0, 1, -6150, -645719]$ \(y^2+y=x^3-6150x-645719\) 3.4.0.a.1, 9.12.0.a.1, 15.8.0-3.a.1.1, 45.24.0-9.a.1.2, 603.36.0.?, $\ldots$ $[(125941/29, 32632304/29)]$
165825.v3 165825.v \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $3.664691006$ $[0, 0, 1, 54600, 16151656]$ \(y^2+y=x^3+54600x+16151656\) 3.12.0.a.1, 15.24.0-3.a.1.1, 603.36.0.?, 3015.72.0.?, 4422.24.1.?, $\ldots$ $[(334, 8464)]$
165825.w1 165825.w \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $6.000395049$ $[0, 0, 1, -7500, -260469]$ \(y^2+y=x^3-7500x-260469\) 134.2.0.? $[(3209/4, 160645/4)]$
165825.x1 165825.x \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -217650, 39090591]$ \(y^2+y=x^3-217650x+39090591\) 134.2.0.? $[ ]$
165825.y1 165825.y \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $7.067333574$ $[0, 0, 1, 3750, -1092969]$ \(y^2+y=x^3+3750x-1092969\) 134.2.0.? $[(6761/8, 355253/8)]$
165825.z1 165825.z \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -169500, 1439126406]$ \(y^2+y=x^3-169500x+1439126406\) 134.2.0.? $[ ]$
165825.ba1 165825.ba \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -14667, -379134]$ \(y^2+xy=x^3-x^2-14667x-379134\) 2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
165825.ba2 165825.ba \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -12792, -553509]$ \(y^2+xy=x^3-x^2-12792x-553509\) 2.3.0.a.1, 60.6.0.b.1, 402.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
165825.bb1 165825.bb \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\mathsf{trivial}$ $5.368487214$ $[1, -1, 0, -1242, -74709]$ \(y^2+xy=x^3-x^2-1242x-74709\) 134.2.0.? $[(1374/5, 14583/5)]$
165825.bc1 165825.bc \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $11.58643427$ $[1, -1, 0, -24750942, 47401535591]$ \(y^2+xy=x^3-x^2-24750942x+47401535591\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[(544391/2, 400857059/2)]$
165825.bc2 165825.bc \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $5.793217135$ $[1, -1, 0, -1547817, 740051216]$ \(y^2+xy=x^3-x^2-1547817x+740051216\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(136064, 50119468)]$
165825.bd1 165825.bd \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $4.049385755$ $[1, -1, 0, -37542, 2187991]$ \(y^2+xy=x^3-x^2-37542x+2187991\) 2.3.0.a.1, 132.6.0.?, 402.6.0.?, 2948.6.0.?, 8844.12.0.? $[(18, 1223)]$
165825.bd2 165825.bd \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $1$ $\Z/2\Z$ $8.098771510$ $[1, -1, 0, -12417, -500384]$ \(y^2+xy=x^3-x^2-12417x-500384\) 2.3.0.a.1, 66.6.0.a.1, 804.6.0.?, 2948.6.0.?, 8844.12.0.? $[(-2700/7, 50378/7)]$
165825.be1 165825.be \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -66942, 6678841]$ \(y^2+xy=x^3-x^2-66942x+6678841\) 2.3.0.a.1, 220.6.0.?, 804.6.0.?, 44220.12.0.? $[ ]$
165825.be2 165825.be \( 3^{2} \cdot 5^{2} \cdot 11 \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -5067, 58216]$ \(y^2+xy=x^3-x^2-5067x+58216\) 2.3.0.a.1, 220.6.0.?, 402.6.0.?, 44220.12.0.? $[ ]$
Next   displayed columns for results