Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
16562.a1 |
16562t1 |
16562.a |
16562t |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{9} \cdot 13^{7} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.541649583$ |
$1$ |
|
$12$ |
$290304$ |
$1.697573$ |
$4019679/8918$ |
$1.11550$ |
$4.45847$ |
$[1, -1, 0, 27431, 2936779]$ |
\(y^2+xy=x^3-x^2+27431x+2936779\) |
728.2.0.? |
$[(933, 28517), (-521/3, 29765/3)]$ |
16562.b1 |
16562s1 |
16562.b |
16562s |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{19} \cdot 7^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2845440$ |
$2.945400$ |
$-19983597574473/3670016$ |
$1.02843$ |
$6.46651$ |
$[1, -1, 0, -25883818, 50700817012]$ |
\(y^2+xy=x^3-x^2-25883818x+50700817012\) |
56.2.0.b.1 |
$[ ]$ |
16562.c1 |
16562y1 |
16562.c |
16562y |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 7^{3} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$2184$ |
$12$ |
$1$ |
$2.387538453$ |
$1$ |
|
$2$ |
$524160$ |
$1.969419$ |
$-24642171/32768$ |
$1.19466$ |
$4.85189$ |
$[1, -1, 0, -93235, 19922293]$ |
\(y^2+xy=x^3-x^2-93235x+19922293\) |
3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? |
$[(-211, 5598)]$ |
16562.d1 |
16562w1 |
16562.d |
16562w |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{2} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1.238623463$ |
$1$ |
|
$4$ |
$48672$ |
$1.109009$ |
$-48013/4$ |
$1.00527$ |
$3.90022$ |
$[1, 0, 1, -6088, -196038]$ |
\(y^2+xy+y=x^3-6088x-196038\) |
52.2.0.a.1 |
$[(183, 2105)]$ |
16562.e1 |
16562q2 |
16562.e |
16562q |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{3} \cdot 7^{3} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$1.568884$ |
$6634074439/228488$ |
$1.01875$ |
$4.51297$ |
$[1, 0, 1, -46310, -3723744]$ |
\(y^2+xy+y=x^3-46310x-3723744\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[ ]$ |
16562.e2 |
16562q1 |
16562.e |
16562q |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{6} \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$48384$ |
$1.222309$ |
$68921/10816$ |
$1.08251$ |
$3.90816$ |
$[1, 0, 1, 1010, -203136]$ |
\(y^2+xy+y=x^3+1010x-203136\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[ ]$ |
16562.f1 |
16562m2 |
16562.f |
16562m |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 7^{9} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$269568$ |
$2.139992$ |
$-156116857/2744$ |
$0.89198$ |
$5.25906$ |
$[1, 1, 0, -513594, 143591596]$ |
\(y^2+xy=x^3+x^2-513594x+143591596\) |
3.4.0.a.1, 21.8.0-3.a.1.2, 24.8.0-3.a.1.5, 56.2.0.b.1, 168.16.0.? |
$[ ]$ |
16562.f2 |
16562m1 |
16562.f |
16562m |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{7} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$89856$ |
$1.590685$ |
$17303/14$ |
$0.76938$ |
$4.31850$ |
$[1, 1, 0, 24671, 951371]$ |
\(y^2+xy=x^3+x^2+24671x+951371\) |
3.4.0.a.1, 21.8.0-3.a.1.1, 24.8.0-3.a.1.6, 56.2.0.b.1, 168.16.0.? |
$[ ]$ |
16562.g1 |
16562k1 |
16562.g |
16562k |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1016064$ |
$2.714378$ |
$-2673465150439/6656$ |
$0.98079$ |
$6.33228$ |
$[1, 1, 0, -16760916, -26418643376]$ |
\(y^2+xy=x^3+x^2-16760916x-26418643376\) |
728.2.0.? |
$[ ]$ |
16562.h1 |
16562i1 |
16562.h |
16562i |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{9} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$314496$ |
$2.373142$ |
$-89167/512$ |
$0.90905$ |
$5.33428$ |
$[1, 1, 0, -298288, -207357184]$ |
\(y^2+xy=x^3+x^2-298288x-207357184\) |
56.2.0.b.1 |
$[ ]$ |
16562.i1 |
16562j1 |
16562.i |
16562j |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{2} \cdot 7^{10} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.2.0.1 |
2Cn |
$728$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$40320$ |
$1.285725$ |
$8281/4$ |
$0.91004$ |
$3.98777$ |
$[1, 1, 0, -8453, -125159]$ |
\(y^2+xy=x^3+x^2-8453x-125159\) |
2.2.0.a.1, 56.4.0-2.a.1.1, 182.6.0.?, 728.12.0.? |
$[ ]$ |
16562.j1 |
16562h3 |
16562.j |
16562h |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{7} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$870912$ |
$2.935886$ |
$-424962187484640625/182$ |
$1.05379$ |
$6.96417$ |
$[1, 1, 0, -129705475, 568518100571]$ |
\(y^2+xy=x^3+x^2-129705475x+568518100571\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 273.8.0.?, $\ldots$ |
$[ ]$ |
16562.j2 |
16562h2 |
16562.j |
16562h |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 7^{9} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$290304$ |
$2.386581$ |
$-795309684625/6028568$ |
$0.94067$ |
$5.60792$ |
$[1, 1, 0, -1598405, 782230597]$ |
\(y^2+xy=x^3+x^2-1598405x+782230597\) |
3.12.0.a.1, 24.24.0-3.a.1.3, 273.24.0.?, 728.2.0.?, 819.72.0.?, $\ldots$ |
$[ ]$ |
16562.j3 |
16562h1 |
16562.j |
16562h |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{7} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$1.837275$ |
$37595375/46592$ |
$0.87083$ |
$4.59501$ |
$[1, 1, 0, 57795, 5737789]$ |
\(y^2+xy=x^3+x^2+57795x+5737789\) |
3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 72.24.0.?, 273.8.0.?, $\ldots$ |
$[ ]$ |
16562.k1 |
16562l2 |
16562.k |
16562l |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{18} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 9.12.0.2 |
2Cn, 3B |
$6552$ |
$864$ |
$28$ |
$1$ |
$1$ |
|
$0$ |
$134784$ |
$1.810490$ |
$2633034313/262144$ |
$0.95218$ |
$4.74559$ |
$[1, 1, 0, -98361, 10763173]$ |
\(y^2+xy=x^3+x^2-98361x+10763173\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ |
$[ ]$ |
16562.k2 |
16562l1 |
16562.k |
16562l |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{6} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 9.12.0.2 |
2Cn, 3B |
$6552$ |
$864$ |
$28$ |
$1$ |
$1$ |
|
$0$ |
$44928$ |
$1.261183$ |
$27369433/64$ |
$0.89811$ |
$4.27555$ |
$[1, 1, 0, -21466, -1217068]$ |
\(y^2+xy=x^3+x^2-21466x-1217068\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ |
$[ ]$ |
16562.l1 |
16562d2 |
16562.l |
16562d |
$2$ |
$7$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{14} \cdot 7^{6} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1.285272102$ |
$1$ |
|
$10$ |
$24192$ |
$1.169882$ |
$-38575685889/16384$ |
$1.08547$ |
$4.23907$ |
$[1, -1, 0, -19070, 1018772]$ |
\(y^2+xy=x^3-x^2-19070x+1018772\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.48.0.?, 364.768.21.? |
$[(76, 26), (79, -15)]$ |
16562.l2 |
16562d1 |
16562.l |
16562d |
$2$ |
$7$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{6} \cdot 13^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
4.8.0.2, 7.8.0.1 |
7B |
$364$ |
$768$ |
$21$ |
$1.285272102$ |
$1$ |
|
$12$ |
$3456$ |
$0.196927$ |
$351/4$ |
$1.27279$ |
$2.63455$ |
$[1, -1, 0, 40, -428]$ |
\(y^2+xy=x^3-x^2+40x-428\) |
4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.48.0.?, 364.768.21.? |
$[(9, 20), (58, 412)]$ |
16562.m1 |
16562e3 |
16562.m |
16562e |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{5} \cdot 7^{9} \cdot 13^{14} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$728$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$5806080$ |
$3.705437$ |
$22868021811807457713/8953460393696$ |
$1.08758$ |
$7.37441$ |
$[1, -1, 0, -489686066, -4169317982348]$ |
\(y^2+xy=x^3-x^2-489686066x-4169317982348\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 52.12.0-4.c.1.1, 56.24.0.bp.1, $\ldots$ |
$[ ]$ |
16562.m2 |
16562e4 |
16562.m |
16562e |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{5} \cdot 7^{18} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$728$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$5806080$ |
$3.705437$ |
$3389174547561866673/74853681183008$ |
$1.05145$ |
$7.17789$ |
$[1, -1, 0, -259143026, 1574800715060]$ |
\(y^2+xy=x^3-x^2-259143026x+1574800715060\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 56.24.0.v.1, 104.24.0.?, $\ldots$ |
$[ ]$ |
16562.m3 |
16562e2 |
16562.m |
16562e |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{10} \cdot 7^{12} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$728$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$2$ |
$2903040$ |
$3.358864$ |
$8511781274893233/3440817243136$ |
$1.08472$ |
$6.56163$ |
$[1, -1, 0, -35224786, -44172943788]$ |
\(y^2+xy=x^3-x^2-35224786x-44172943788\) |
2.6.0.a.1, 8.12.0.a.1, 28.12.0.b.1, 52.12.0-2.a.1.1, 56.24.0.d.1, $\ldots$ |
$[ ]$ |
16562.m4 |
16562e1 |
16562.m |
16562e |
$4$ |
$4$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{20} \cdot 7^{9} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$728$ |
$48$ |
$0$ |
$1$ |
$9$ |
$3$ |
$1$ |
$1451520$ |
$3.012291$ |
$71903073502287/60782804992$ |
$1.03131$ |
$6.07023$ |
$[1, -1, 0, 7173934, -5021965740]$ |
\(y^2+xy=x^3-x^2+7173934x-5021965740\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 28.12.0.g.1, $\ldots$ |
$[ ]$ |
16562.n1 |
16562b2 |
16562.n |
16562b |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{18} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.4.0.1, 9.24.0.4 |
2Cn, 3B.1.2 |
$6552$ |
$864$ |
$28$ |
$1.589161971$ |
$1$ |
|
$4$ |
$943488$ |
$2.783443$ |
$2633034313/262144$ |
$0.95218$ |
$5.94741$ |
$[1, 0, 1, -4819715, -3706227458]$ |
\(y^2+xy+y=x^3-4819715x-3706227458\) |
2.2.0.a.1, 3.8.0-3.a.1.1, 6.16.0-6.a.1.1, 8.4.0-2.a.1.1, 9.24.0-9.b.1.1, $\ldots$ |
$[(-1025, 13056)]$ |
16562.n2 |
16562b1 |
16562.n |
16562b |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{6} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.4.0.1, 9.24.0.2 |
2Cn, 3B.1.1 |
$6552$ |
$864$ |
$28$ |
$4.767485914$ |
$1$ |
|
$4$ |
$314496$ |
$2.234138$ |
$27369433/64$ |
$0.89811$ |
$5.47736$ |
$[1, 0, 1, -1051860, 414298770]$ |
\(y^2+xy+y=x^3-1051860x+414298770\) |
2.2.0.a.1, 3.8.0-3.a.1.2, 6.16.0-6.a.1.2, 8.4.0-2.a.1.1, 9.24.0-9.b.1.2, $\ldots$ |
$[(537, 1823)]$ |
16562.o1 |
16562v2 |
16562.o |
16562v |
$2$ |
$5$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 7^{6} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$10920$ |
$576$ |
$17$ |
$26.04621153$ |
$1$ |
|
$0$ |
$514800$ |
$2.556572$ |
$-1680914269/32768$ |
$1.02322$ |
$5.76804$ |
$[1, 0, 1, -2666655, -1704312270]$ |
\(y^2+xy+y=x^3-2666655x-1704312270\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(8649310224090/31841, 24794082555395308780/31841)]$ |
16562.o2 |
16562v1 |
16562.o |
16562v |
$2$ |
$5$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 7^{6} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3, 5$ |
3.6.0.1, 5.6.0.1 |
3Ns, 5B |
$10920$ |
$576$ |
$17$ |
$5.209242307$ |
$1$ |
|
$2$ |
$102960$ |
$1.751852$ |
$1331/8$ |
$0.93577$ |
$4.54900$ |
$[1, 0, 1, 24670, 4571452]$ |
\(y^2+xy+y=x^3+24670x+4571452\) |
3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ |
$[(8464, 774604)]$ |
16562.p1 |
16562f1 |
16562.p |
16562f |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$44928$ |
$1.400188$ |
$-89167/512$ |
$0.90905$ |
$4.13247$ |
$[1, 0, 1, -6088, 603670]$ |
\(y^2+xy+y=x^3-6088x+603670\) |
56.2.0.b.1 |
$[ ]$ |
16562.q1 |
16562a1 |
16562.q |
16562a |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{2} \cdot 7^{4} \cdot 13^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.4.0.1 |
2Cn |
$728$ |
$12$ |
$0$ |
$0.522690207$ |
$1$ |
|
$4$ |
$5760$ |
$0.312769$ |
$8281/4$ |
$0.91004$ |
$2.78595$ |
$[1, 0, 1, -173, 340]$ |
\(y^2+xy+y=x^3-173x+340\) |
2.2.0.a.1, 8.4.0-2.a.1.1, 182.6.0.?, 728.12.0.? |
$[(1, 12)]$ |
16562.r1 |
16562g1 |
16562.r |
16562g |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$145152$ |
$1.741425$ |
$-2673465150439/6656$ |
$0.98079$ |
$5.13047$ |
$[1, 0, 1, -342060, 76973418]$ |
\(y^2+xy+y=x^3-342060x+76973418\) |
728.2.0.? |
$[ ]$ |
16562.s1 |
16562u1 |
16562.s |
16562u |
$2$ |
$5$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{7} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$3640$ |
$48$ |
$1$ |
$0.460656571$ |
$1$ |
|
$4$ |
$11520$ |
$0.588531$ |
$-226981/14$ |
$0.81013$ |
$3.27377$ |
$[1, 0, 1, -810, 9258]$ |
\(y^2+xy+y=x^3-810x+9258\) |
5.6.0.a.1, 65.12.0.a.2, 280.12.0.?, 455.24.0.?, 520.24.0.?, $\ldots$ |
$[(18, 15)]$ |
16562.s2 |
16562u2 |
16562.s |
16562u |
$2$ |
$5$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{5} \cdot 7^{11} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.6.0.1 |
5B |
$3640$ |
$48$ |
$1$ |
$2.303282855$ |
$1$ |
|
$2$ |
$57600$ |
$1.393250$ |
$5735339/537824$ |
$1.00587$ |
$4.11885$ |
$[1, 0, 1, 2375, -565316]$ |
\(y^2+xy+y=x^3+2375x-565316\) |
5.6.0.a.1, 65.12.0.a.1, 280.12.0.?, 455.24.0.?, 520.24.0.?, $\ldots$ |
$[(746, 20035)]$ |
16562.t1 |
16562o2 |
16562.t |
16562o |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{3} \cdot 7^{9} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$677376$ |
$2.541840$ |
$6634074439/228488$ |
$1.01875$ |
$5.71479$ |
$[1, 1, 0, -2269166, 1274974940]$ |
\(y^2+xy=x^3+x^2-2269166x+1274974940\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[ ]$ |
16562.t2 |
16562o1 |
16562.t |
16562o |
$2$ |
$2$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{6} \cdot 7^{9} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$338688$ |
$2.195267$ |
$68921/10816$ |
$1.08251$ |
$5.10997$ |
$[1, 1, 0, 49514, 69725076]$ |
\(y^2+xy=x^3+x^2+49514x+69725076\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[ ]$ |
16562.u1 |
16562n1 |
16562.u |
16562n |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{10} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.4.0.3 |
|
$4$ |
$4$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$299520$ |
$2.268093$ |
$15925559/50176$ |
$0.91331$ |
$5.17456$ |
$[1, 1, 0, 239977, -95290411]$ |
\(y^2+xy=x^3+x^2+239977x-95290411\) |
4.4.0-4.a.1.1 |
$[ ]$ |
16562.v1 |
16562p1 |
16562.v |
16562p |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{8} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.4.0.3, 3.4.0.1 |
3B |
$84$ |
$32$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$69120$ |
$1.277258$ |
$-1214950633/196$ |
$0.94977$ |
$4.41113$ |
$[1, 1, 0, -33296, -2352748]$ |
\(y^2+xy=x^3+x^2-33296x-2352748\) |
3.4.0.a.1, 4.4.0-4.a.1.1, 12.16.0-12.a.1.3, 21.8.0-3.a.1.1, 84.32.0.? |
$[ ]$ |
16562.v2 |
16562p2 |
16562.v |
16562p |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{6} \cdot 7^{12} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.4.0.3, 3.4.0.1 |
3B |
$84$ |
$32$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$207360$ |
$1.826565$ |
$17546087/7529536$ |
$1.06847$ |
$4.65503$ |
$[1, 1, 0, 8109, -7644307]$ |
\(y^2+xy=x^3+x^2+8109x-7644307\) |
3.4.0.a.1, 4.4.0-4.a.1.1, 12.16.0-12.a.1.3, 21.8.0-3.a.1.2, 84.32.0.? |
$[ ]$ |
16562.w1 |
16562c1 |
16562.w |
16562c |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{8} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$340704$ |
$2.081963$ |
$-48013/4$ |
$1.00527$ |
$5.10203$ |
$[1, 1, 0, -298288, 66942660]$ |
\(y^2+xy=x^3+x^2-298288x+66942660\) |
52.2.0.a.1 |
$[ ]$ |
16562.x1 |
16562x1 |
16562.x |
16562x |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 7^{9} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$2184$ |
$12$ |
$1$ |
$26.59906766$ |
$1$ |
|
$0$ |
$3669120$ |
$2.942375$ |
$-24642171/32768$ |
$1.19466$ |
$6.05371$ |
$[1, -1, 0, -4568524, -6824209456]$ |
\(y^2+xy=x^3-x^2-4568524x-6824209456\) |
3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? |
$[(4400804908327/39234, 3474525369193872995/39234)]$ |
16562.y1 |
16562r2 |
16562.y |
16562r |
$2$ |
$7$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{6} \cdot 13^{13} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$728$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$889056$ |
$2.545223$ |
$-1064019559329/125497034$ |
$1.06269$ |
$5.65563$ |
$[1, -1, 0, -1761265, 987547679]$ |
\(y^2+xy=x^3-x^2-1761265x+987547679\) |
7.24.0.a.2, 56.48.0-7.a.2.8, 91.48.0.?, 104.2.0.?, 728.96.2.? |
$[ ]$ |
16562.y2 |
16562r1 |
16562.y |
16562r |
$2$ |
$7$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 7^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$728$ |
$96$ |
$2$ |
$1$ |
$9$ |
$3$ |
$0$ |
$127008$ |
$1.572269$ |
$-2146689/1664$ |
$0.96784$ |
$4.37417$ |
$[1, -1, 0, -22255, -1949011]$ |
\(y^2+xy=x^3-x^2-22255x-1949011\) |
7.24.0.a.1, 56.48.0-7.a.1.8, 91.48.0.?, 104.2.0.?, 728.96.2.? |
$[ ]$ |
16562.z1 |
16562bx1 |
16562.z |
16562bx |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{15} \cdot 7^{3} \cdot 13^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.3.0.1 |
3Nn |
$2184$ |
$12$ |
$1$ |
$0.081941474$ |
$1$ |
|
$34$ |
$40320$ |
$0.686945$ |
$-24642171/32768$ |
$1.19466$ |
$3.26776$ |
$[1, -1, 1, -552, 9195]$ |
\(y^2+xy+y=x^3-x^2-552x+9195\) |
3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? |
$[(-3, 105), (-19, 121)]$ |
16562.ba1 |
16562bs1 |
16562.ba |
16562bs |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{19} \cdot 7^{7} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$56$ |
$2$ |
$0$ |
$0.060688777$ |
$1$ |
|
$14$ |
$218880$ |
$1.662926$ |
$-19983597574473/3670016$ |
$1.02843$ |
$4.88237$ |
$[1, -1, 1, -153159, 23112639]$ |
\(y^2+xy+y=x^3-x^2-153159x+23112639\) |
56.2.0.b.1 |
$[(219, 86)]$ |
16562.bb1 |
16562br1 |
16562.bb |
16562br |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{7} \cdot 7^{7} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$1.137769825$ |
$1$ |
|
$4$ |
$1128960$ |
$2.569866$ |
$-1207949625/332678528$ |
$1.06089$ |
$5.57338$ |
$[1, -1, 1, -183735, -661942641]$ |
\(y^2+xy+y=x^3-x^2-183735x-661942641\) |
728.2.0.? |
$[(1193, 27964)]$ |
16562.bc1 |
16562bv1 |
16562.bc |
16562bv |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{2} \cdot 7^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$52$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3744$ |
$-0.173466$ |
$-48013/4$ |
$1.00527$ |
$2.31608$ |
$[1, 0, 0, -36, -92]$ |
\(y^2+xy=x^3-36x-92\) |
52.2.0.a.1 |
$[ ]$ |
16562.bd1 |
16562bm3 |
16562.bd |
16562bm |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{9} \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$0.311629297$ |
$1$ |
|
$8$ |
$381024$ |
$2.309814$ |
$-10730978619193/6656$ |
$1.02193$ |
$5.87443$ |
$[1, 1, 1, -3805292, 2855546637]$ |
\(y^2+xy+y=x^3+x^2-3805292x+2855546637\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ |
$[(1149, 777)]$ |
16562.bd2 |
16562bm2 |
16562.bd |
16562bm |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 7^{6} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.12.0.1 |
3Cs |
$6552$ |
$144$ |
$3$ |
$0.934887892$ |
$1$ |
|
$4$ |
$127008$ |
$1.760509$ |
$-10218313/17576$ |
$0.94717$ |
$4.58927$ |
$[1, 1, 1, -37437, 5541115]$ |
\(y^2+xy+y=x^3+x^2-37437x+5541115\) |
3.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.24.0.?, 273.24.0.?, $\ldots$ |
$[(-203, 2298)]$ |
16562.bd3 |
16562bm1 |
16562.bd |
16562bm |
$3$ |
$9$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2 \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.12.0.1 |
3B |
$6552$ |
$144$ |
$3$ |
$2.804663676$ |
$1$ |
|
$0$ |
$42336$ |
$1.211205$ |
$12167/26$ |
$0.84415$ |
$3.85617$ |
$[1, 1, 1, 3968, -156213]$ |
\(y^2+xy+y=x^3+x^2+3968x-156213\) |
3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ |
$[(215/2, 3499/2)]$ |
16562.be1 |
16562bl2 |
16562.be |
16562bl |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{18} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 9.12.0.2 |
2Cn, 3B |
$6552$ |
$864$ |
$28$ |
$0.180269832$ |
$1$ |
|
$8$ |
$10368$ |
$0.528015$ |
$2633034313/262144$ |
$0.95218$ |
$3.16146$ |
$[1, 1, 1, -582, 4675]$ |
\(y^2+xy+y=x^3+x^2-582x+4675\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ |
$[(1, 63)]$ |
16562.be2 |
16562bl1 |
16562.be |
16562bl |
$2$ |
$3$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( 2^{6} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.2.0.1, 9.12.0.2 |
2Cn, 3B |
$6552$ |
$864$ |
$28$ |
$0.540809498$ |
$1$ |
|
$4$ |
$3456$ |
$-0.021291$ |
$27369433/64$ |
$0.89811$ |
$2.69141$ |
$[1, 1, 1, -127, -603]$ |
\(y^2+xy+y=x^3+x^2-127x-603\) |
2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ |
$[(-7, 4)]$ |
16562.bf1 |
16562bj1 |
16562.bf |
16562bj |
$1$ |
$1$ |
\( 2 \cdot 7^{2} \cdot 13^{2} \) |
\( - 2^{3} \cdot 7^{3} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$728$ |
$2$ |
$0$ |
$0.226314919$ |
$1$ |
|
$6$ |
$16128$ |
$0.841987$ |
$-29791/104$ |
$0.82287$ |
$3.44626$ |
$[1, 1, 1, -764, 21237]$ |
\(y^2+xy+y=x^3+x^2-764x+21237\) |
728.2.0.? |
$[(31, 153)]$ |