Learn more

Refine search


Results (1-50 of 79 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
16562.a1 16562.a \( 2 \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.541649583$ $[1, -1, 0, 27431, 2936779]$ \(y^2+xy=x^3-x^2+27431x+2936779\) 728.2.0.? $[(933, 28517), (-521/3, 29765/3)]$
16562.b1 16562.b \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -25883818, 50700817012]$ \(y^2+xy=x^3-x^2-25883818x+50700817012\) 56.2.0.b.1 $[ ]$
16562.c1 16562.c \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.387538453$ $[1, -1, 0, -93235, 19922293]$ \(y^2+xy=x^3-x^2-93235x+19922293\) 3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? $[(-211, 5598)]$
16562.d1 16562.d \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.238623463$ $[1, 0, 1, -6088, -196038]$ \(y^2+xy+y=x^3-6088x-196038\) 52.2.0.a.1 $[(183, 2105)]$
16562.e1 16562.e \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -46310, -3723744]$ \(y^2+xy+y=x^3-46310x-3723744\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 $[ ]$
16562.e2 16562.e \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 1010, -203136]$ \(y^2+xy+y=x^3+1010x-203136\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 $[ ]$
16562.f1 16562.f \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -513594, 143591596]$ \(y^2+xy=x^3+x^2-513594x+143591596\) 3.4.0.a.1, 21.8.0-3.a.1.2, 24.8.0-3.a.1.5, 56.2.0.b.1, 168.16.0.? $[ ]$
16562.f2 16562.f \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 24671, 951371]$ \(y^2+xy=x^3+x^2+24671x+951371\) 3.4.0.a.1, 21.8.0-3.a.1.1, 24.8.0-3.a.1.6, 56.2.0.b.1, 168.16.0.? $[ ]$
16562.g1 16562.g \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -16760916, -26418643376]$ \(y^2+xy=x^3+x^2-16760916x-26418643376\) 728.2.0.? $[ ]$
16562.h1 16562.h \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -298288, -207357184]$ \(y^2+xy=x^3+x^2-298288x-207357184\) 56.2.0.b.1 $[ ]$
16562.i1 16562.i \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -8453, -125159]$ \(y^2+xy=x^3+x^2-8453x-125159\) 2.2.0.a.1, 56.4.0-2.a.1.1, 182.6.0.?, 728.12.0.? $[ ]$
16562.j1 16562.j \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -129705475, 568518100571]$ \(y^2+xy=x^3+x^2-129705475x+568518100571\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.5, 72.24.0.?, 273.8.0.?, $\ldots$ $[ ]$
16562.j2 16562.j \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1598405, 782230597]$ \(y^2+xy=x^3+x^2-1598405x+782230597\) 3.12.0.a.1, 24.24.0-3.a.1.3, 273.24.0.?, 728.2.0.?, 819.72.0.?, $\ldots$ $[ ]$
16562.j3 16562.j \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 57795, 5737789]$ \(y^2+xy=x^3+x^2+57795x+5737789\) 3.4.0.a.1, 9.12.0.a.1, 24.8.0-3.a.1.6, 72.24.0.?, 273.8.0.?, $\ldots$ $[ ]$
16562.k1 16562.k \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -98361, 10763173]$ \(y^2+xy=x^3+x^2-98361x+10763173\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ $[ ]$
16562.k2 16562.k \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -21466, -1217068]$ \(y^2+xy=x^3+x^2-21466x-1217068\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ $[ ]$
16562.l1 16562.l \( 2 \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.285272102$ $[1, -1, 0, -19070, 1018772]$ \(y^2+xy=x^3-x^2-19070x+1018772\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.1, 91.48.0.?, 364.768.21.? $[(76, 26), (79, -15)]$
16562.l2 16562.l \( 2 \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.285272102$ $[1, -1, 0, 40, -428]$ \(y^2+xy=x^3-x^2+40x-428\) 4.8.0.b.1, 7.8.0.a.1, 28.128.5.b.2, 91.48.0.?, 364.768.21.? $[(9, 20), (58, 412)]$
16562.m1 16562.m \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -489686066, -4169317982348]$ \(y^2+xy=x^3-x^2-489686066x-4169317982348\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 52.12.0-4.c.1.1, 56.24.0.bp.1, $\ldots$ $[ ]$
16562.m2 16562.m \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -259143026, 1574800715060]$ \(y^2+xy=x^3-x^2-259143026x+1574800715060\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 56.24.0.v.1, 104.24.0.?, $\ldots$ $[ ]$
16562.m3 16562.m \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, -1, 0, -35224786, -44172943788]$ \(y^2+xy=x^3-x^2-35224786x-44172943788\) 2.6.0.a.1, 8.12.0.a.1, 28.12.0.b.1, 52.12.0-2.a.1.1, 56.24.0.d.1, $\ldots$ $[ ]$
16562.m4 16562.m \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 7173934, -5021965740]$ \(y^2+xy=x^3-x^2+7173934x-5021965740\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 28.12.0.g.1, $\ldots$ $[ ]$
16562.n1 16562.n \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.589161971$ $[1, 0, 1, -4819715, -3706227458]$ \(y^2+xy+y=x^3-4819715x-3706227458\) 2.2.0.a.1, 3.8.0-3.a.1.1, 6.16.0-6.a.1.1, 8.4.0-2.a.1.1, 9.24.0-9.b.1.1, $\ldots$ $[(-1025, 13056)]$
16562.n2 16562.n \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/3\Z$ $4.767485914$ $[1, 0, 1, -1051860, 414298770]$ \(y^2+xy+y=x^3-1051860x+414298770\) 2.2.0.a.1, 3.8.0-3.a.1.2, 6.16.0-6.a.1.2, 8.4.0-2.a.1.1, 9.24.0-9.b.1.2, $\ldots$ $[(537, 1823)]$
16562.o1 16562.o \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $26.04621153$ $[1, 0, 1, -2666655, -1704312270]$ \(y^2+xy+y=x^3-2666655x-1704312270\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.1, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[(8649310224090/31841, 24794082555395308780/31841)]$
16562.o2 16562.o \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $5.209242307$ $[1, 0, 1, 24670, 4571452]$ \(y^2+xy+y=x^3+24670x+4571452\) 3.6.0.b.1, 5.6.0.a.1, 15.72.1.a.2, 24.12.0.bx.1, 39.12.0.a.1, $\ldots$ $[(8464, 774604)]$
16562.p1 16562.p \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -6088, 603670]$ \(y^2+xy+y=x^3-6088x+603670\) 56.2.0.b.1 $[ ]$
16562.q1 16562.q \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.522690207$ $[1, 0, 1, -173, 340]$ \(y^2+xy+y=x^3-173x+340\) 2.2.0.a.1, 8.4.0-2.a.1.1, 182.6.0.?, 728.12.0.? $[(1, 12)]$
16562.r1 16562.r \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -342060, 76973418]$ \(y^2+xy+y=x^3-342060x+76973418\) 728.2.0.? $[ ]$
16562.s1 16562.s \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.460656571$ $[1, 0, 1, -810, 9258]$ \(y^2+xy+y=x^3-810x+9258\) 5.6.0.a.1, 65.12.0.a.2, 280.12.0.?, 455.24.0.?, 520.24.0.?, $\ldots$ $[(18, 15)]$
16562.s2 16562.s \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.303282855$ $[1, 0, 1, 2375, -565316]$ \(y^2+xy+y=x^3+2375x-565316\) 5.6.0.a.1, 65.12.0.a.1, 280.12.0.?, 455.24.0.?, 520.24.0.?, $\ldots$ $[(746, 20035)]$
16562.t1 16562.t \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2269166, 1274974940]$ \(y^2+xy=x^3+x^2-2269166x+1274974940\) 2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 $[ ]$
16562.t2 16562.t \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 49514, 69725076]$ \(y^2+xy=x^3+x^2+49514x+69725076\) 2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 $[ ]$
16562.u1 16562.u \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 239977, -95290411]$ \(y^2+xy=x^3+x^2+239977x-95290411\) 4.4.0-4.a.1.1 $[ ]$
16562.v1 16562.v \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -33296, -2352748]$ \(y^2+xy=x^3+x^2-33296x-2352748\) 3.4.0.a.1, 4.4.0-4.a.1.1, 12.16.0-12.a.1.3, 21.8.0-3.a.1.1, 84.32.0.? $[ ]$
16562.v2 16562.v \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 8109, -7644307]$ \(y^2+xy=x^3+x^2+8109x-7644307\) 3.4.0.a.1, 4.4.0-4.a.1.1, 12.16.0-12.a.1.3, 21.8.0-3.a.1.2, 84.32.0.? $[ ]$
16562.w1 16562.w \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -298288, 66942660]$ \(y^2+xy=x^3+x^2-298288x+66942660\) 52.2.0.a.1 $[ ]$
16562.x1 16562.x \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $26.59906766$ $[1, -1, 0, -4568524, -6824209456]$ \(y^2+xy=x^3-x^2-4568524x-6824209456\) 3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? $[(4400804908327/39234, 3474525369193872995/39234)]$
16562.y1 16562.y \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -1761265, 987547679]$ \(y^2+xy=x^3-x^2-1761265x+987547679\) 7.24.0.a.2, 56.48.0-7.a.2.8, 91.48.0.?, 104.2.0.?, 728.96.2.? $[ ]$
16562.y2 16562.y \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -22255, -1949011]$ \(y^2+xy=x^3-x^2-22255x-1949011\) 7.24.0.a.1, 56.48.0-7.a.1.8, 91.48.0.?, 104.2.0.?, 728.96.2.? $[ ]$
16562.z1 16562.z \( 2 \cdot 7^{2} \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.081941474$ $[1, -1, 1, -552, 9195]$ \(y^2+xy+y=x^3-x^2-552x+9195\) 3.3.0.a.1, 24.6.0.m.1, 273.6.0.?, 728.2.0.?, 2184.12.1.? $[(-3, 105), (-19, 121)]$
16562.ba1 16562.ba \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.060688777$ $[1, -1, 1, -153159, 23112639]$ \(y^2+xy+y=x^3-x^2-153159x+23112639\) 56.2.0.b.1 $[(219, 86)]$
16562.bb1 16562.bb \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.137769825$ $[1, -1, 1, -183735, -661942641]$ \(y^2+xy+y=x^3-x^2-183735x-661942641\) 728.2.0.? $[(1193, 27964)]$
16562.bc1 16562.bc \( 2 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -36, -92]$ \(y^2+xy=x^3-36x-92\) 52.2.0.a.1 $[ ]$
16562.bd1 16562.bd \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.311629297$ $[1, 1, 1, -3805292, 2855546637]$ \(y^2+xy+y=x^3+x^2-3805292x+2855546637\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ $[(1149, 777)]$
16562.bd2 16562.bd \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.934887892$ $[1, 1, 1, -37437, 5541115]$ \(y^2+xy+y=x^3+x^2-37437x+5541115\) 3.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.24.0.?, 273.24.0.?, $\ldots$ $[(-203, 2298)]$
16562.bd3 16562.bd \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.804663676$ $[1, 1, 1, 3968, -156213]$ \(y^2+xy+y=x^3+x^2+3968x-156213\) 3.4.0.a.1, 9.12.0.a.1, 104.2.0.?, 117.36.0.?, 168.8.0.?, $\ldots$ $[(215/2, 3499/2)]$
16562.be1 16562.be \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.180269832$ $[1, 1, 1, -582, 4675]$ \(y^2+xy+y=x^3+x^2-582x+4675\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ $[(1, 63)]$
16562.be2 16562.be \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.540809498$ $[1, 1, 1, -127, -603]$ \(y^2+xy+y=x^3+x^2-127x-603\) 2.2.0.a.1, 3.4.0.a.1, 6.8.0.a.1, 9.12.0.b.1, 18.24.0.b.1, $\ldots$ $[(-7, 4)]$
16562.bf1 16562.bf \( 2 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.226314919$ $[1, 1, 1, -764, 21237]$ \(y^2+xy+y=x^3+x^2-764x+21237\) 728.2.0.? $[(31, 153)]$
Next   displayed columns for results