Learn more

Refine search


Results (1-50 of 151 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
165165.a1 165165.a \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.371352517$ $[0, -1, 1, -106036, -13279608]$ \(y^2+y=x^3-x^2-106036x-13279608\) 182.2.0.? $[(466, 6187)]$
165165.b1 165165.b \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.106110026$ $[0, -1, 1, -7586, 261392]$ \(y^2+y=x^3-x^2-7586x+261392\) 182.2.0.? $[(151, 1592), (149/2, 1361/2)]$
165165.c1 165165.c \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -22633726430, -1623273257315194]$ \(y^2+y=x^3-x^2-22633726430x-1623273257315194\) 6006.2.0.? $[ ]$
165165.d1 165165.d \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -8470040, -42912739882]$ \(y^2+y=x^3-x^2-8470040x-42912739882\) 182.2.0.? $[ ]$
165165.e1 165165.e \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -2658300, -1667337442]$ \(y^2+y=x^3-x^2-2658300x-1667337442\) 182.2.0.? $[ ]$
165165.f1 165165.f \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.071256840$ $[0, 1, 1, -5650, 493906]$ \(y^2+y=x^3+x^2-5650x+493906\) 1430.2.0.? $[(425, 8662), (-100, 262)]$
165165.g1 165165.g \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.548534608$ $[0, 1, 1, 70, -16]$ \(y^2+y=x^3+x^2+70x-16\) 182.2.0.? $[(1, 7)]$
165165.h1 165165.h \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $0.039653532$ $[0, 1, 1, -33040, 4121794]$ \(y^2+y=x^3+x^2-33040x+4121794\) 6006.2.0.? $[(161, 1732)]$
165165.i1 165165.i \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -4497610, -3837693194]$ \(y^2+y=x^3+x^2-4497610x-3837693194\) 2310.2.0.? $[ ]$
165165.j1 165165.j \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.943599533$ $[1, 1, 1, -9226, -282952]$ \(y^2+xy+y=x^3+x^2-9226x-282952\) 2.3.0.a.1, 572.6.0.?, 924.6.0.?, 1092.6.0.?, 12012.12.0.? $[(121, 564)]$
165165.j2 165165.j \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.971799766$ $[1, 1, 1, 1169, -25156]$ \(y^2+xy+y=x^3+x^2+1169x-25156\) 2.3.0.a.1, 286.6.0.?, 924.6.0.?, 1092.6.0.?, 12012.12.0.? $[(94, 915)]$
165165.k1 165165.k \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.848687186$ $[1, 1, 1, -2041696, -1123725646]$ \(y^2+xy+y=x^3+x^2-2041696x-1123725646\) 2.3.0.a.1, 4.6.0.c.1, 132.12.0.?, 156.12.0.?, 572.12.0.?, $\ldots$ $[(51949/5, 7382108/5)]$
165165.k2 165165.k \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.424343593$ $[1, 1, 1, -130501, -16761502]$ \(y^2+xy+y=x^3+x^2-130501x-16761502\) 2.6.0.a.1, 132.12.0.?, 156.12.0.?, 420.12.0.?, 572.12.0.?, $\ldots$ $[(688, 14478)]$
165165.k3 165165.k \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.848687186$ $[1, 1, 1, -28256, 1519904]$ \(y^2+xy+y=x^3+x^2-28256x+1519904\) 2.3.0.a.1, 4.6.0.c.1, 132.12.0.?, 210.6.0.?, 312.12.0.?, $\ldots$ $[(9248/7, 557033/7)]$
165165.k4 165165.k \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $6.848687186$ $[1, 1, 1, 144774, -77762442]$ \(y^2+xy+y=x^3+x^2+144774x-77762442\) 2.3.0.a.1, 4.6.0.c.1, 264.12.0.?, 312.12.0.?, 572.12.0.?, $\ldots$ $[(623, 15648)]$
165165.l1 165165.l \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.890022822$ $[1, 1, 1, -22758106, 41772590564]$ \(y^2+xy+y=x^3+x^2-22758106x+41772590564\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 264.12.0.?, 312.12.0.?, $\ldots$ $[(11607/2, 95111/2)]$
165165.l2 165165.l \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.890022822$ $[1, 1, 1, -9647756, -11140169776]$ \(y^2+xy+y=x^3+x^2-9647756x-11140169776\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 132.12.0.?, 312.12.0.?, $\ldots$ $[(24887/2, 3270947/2)]$
165165.l3 165165.l \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.445011411$ $[1, 1, 1, -1561931, 516355544]$ \(y^2+xy+y=x^3+x^2-1561931x+516355544\) 2.6.0.a.1, 20.12.0-2.a.1.1, 132.12.0.?, 156.12.0.?, 572.12.0.?, $\ldots$ $[(149, 16865)]$
165165.l4 165165.l \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $4.890022822$ $[1, 1, 1, 268194, 54431994]$ \(y^2+xy+y=x^3+x^2+268194x+54431994\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 78.6.0.?, 132.12.0.?, $\ldots$ $[(1419, 56690)]$
165165.m1 165165.m \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -43163425, 109131568250]$ \(y^2+xy+y=x^3+x^2-43163425x+109131568250\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 924.12.0.?, 1848.24.0.?, $\ldots$ $[ ]$
165165.m2 165165.m \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -3130575, 1120327770]$ \(y^2+xy+y=x^3+x^2-3130575x+1120327770\) 2.3.0.a.1, 4.12.0-4.c.1.2, 1848.24.0.?, 2860.24.0.?, 10920.24.0.?, $\ldots$ $[ ]$
165165.m3 165165.m \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2698000, 1703957960]$ \(y^2+xy+y=x^3+x^2-2698000x+1703957960\) 2.6.0.a.1, 4.12.0-2.a.1.1, 924.24.0.?, 2860.24.0.?, 5460.24.0.?, $\ldots$ $[ ]$
165165.m4 165165.m \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -141875, 35319560]$ \(y^2+xy+y=x^3+x^2-141875x+35319560\) 2.3.0.a.1, 4.12.0-4.c.1.1, 462.6.0.?, 924.24.0.?, 5720.24.0.?, $\ldots$ $[ ]$
165165.n1 165165.n \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -3770, -90628]$ \(y^2+xy+y=x^3+x^2-3770x-90628\) 2.3.0.a.1, 924.6.0.?, 2860.6.0.?, 5460.6.0.?, 60060.12.0.? $[ ]$
165165.n2 165165.n \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -195, -1968]$ \(y^2+xy+y=x^3+x^2-195x-1968\) 2.3.0.a.1, 462.6.0.?, 2860.6.0.?, 5460.6.0.?, 60060.12.0.? $[ ]$
165165.o1 165165.o \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -388858841, -2938226900850]$ \(y^2+xy=x^3-388858841x-2938226900850\) 2.3.0.a.1, 924.6.0.?, 2860.6.0.?, 5460.6.0.?, 60060.12.0.? $[ ]$
165165.o2 165165.o \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -11249466, -95054872725]$ \(y^2+xy=x^3-11249466x-95054872725\) 2.3.0.a.1, 462.6.0.?, 2860.6.0.?, 5460.6.0.?, 60060.12.0.? $[ ]$
165165.p1 165165.p \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.574064003$ $[1, 0, 0, -68186, -6857949]$ \(y^2+xy=x^3-68186x-6857949\) 2.3.0.a.1, 4.6.0.c.1, 132.12.0.?, 210.6.0.?, 312.12.0.?, $\ldots$ $[(-150, 51)]$
165165.p2 165165.p \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.574064003$ $[1, 0, 0, -28256, 1758945]$ \(y^2+xy=x^3-28256x+1758945\) 2.3.0.a.1, 4.6.0.c.1, 132.12.0.?, 156.12.0.?, 572.12.0.?, $\ldots$ $[(384, 6705)]$
165165.p3 165165.p \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.787032001$ $[1, 0, 0, -4661, -86184]$ \(y^2+xy=x^3-4661x-86184\) 2.6.0.a.1, 132.12.0.?, 156.12.0.?, 420.12.0.?, 572.12.0.?, $\ldots$ $[(-29, 172)]$
165165.p4 165165.p \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $3.574064003$ $[1, 0, 0, 784, -8865]$ \(y^2+xy=x^3+784x-8865\) 2.3.0.a.1, 4.6.0.c.1, 264.12.0.?, 312.12.0.?, 572.12.0.?, $\ldots$ $[(91, 859)]$
165165.q1 165165.q \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $34.53248545$ $[1, 0, 0, -6814610921, -216384280349874]$ \(y^2+xy=x^3-6814610921x-216384280349874\) 2.3.0.a.1, 220.6.0.?, 364.6.0.?, 20020.12.0.? $[(1303597317928567411/1369079, 1476488571658495759743174953/1369079)]$
165165.q2 165165.q \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $69.06497091$ $[1, 0, 0, -337445226, -4825798986645]$ \(y^2+xy=x^3-337445226x-4825798986645\) 2.3.0.a.1, 110.6.0.?, 364.6.0.?, 20020.12.0.? $[(17574612531998540843362478098419/10056546520157, 73141244246296910219592165993414721488837868320/10056546520157)]$
165165.r1 165165.r \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $2$ $\mathsf{trivial}$ $0.076754985$ $[1, 0, 0, -618736, 222556841]$ \(y^2+xy=x^3-618736x+222556841\) 1092.2.0.? $[(8381, 759842), (443, 5732)]$
165165.s1 165165.s \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.576850514$ $[1, 0, 0, -528591, 147876246]$ \(y^2+xy=x^3-528591x+147876246\) 2.3.0.a.1, 4.6.0.c.1, 280.12.0.?, 308.12.0.?, 364.12.0.?, $\ldots$ $[(426, 12)]$
165165.s2 165165.s \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.788425257$ $[1, 0, 0, -33096, 2299815]$ \(y^2+xy=x^3-33096x+2299815\) 2.6.0.a.1, 140.12.0.?, 220.12.0.?, 260.12.0.?, 308.12.0.?, $\ldots$ $[(63, 651)]$
165165.s3 165165.s \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.394212628$ $[1, 0, 0, -11921, 5209260]$ \(y^2+xy=x^3-11921x+5209260\) 2.3.0.a.1, 4.6.0.c.1, 70.6.0.a.1, 140.12.0.?, 220.12.0.?, $\ldots$ $[(-89, 2404)]$
165165.s4 165165.s \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.576850514$ $[1, 0, 0, -3451, -18424]$ \(y^2+xy=x^3-3451x-18424\) 2.3.0.a.1, 4.6.0.c.1, 130.6.0.?, 220.12.0.?, 260.12.0.?, $\ldots$ $[(-7, 77)]$
165165.t1 165165.t \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.366728175$ $[1, 0, 0, -2527757581, -48912438507580]$ \(y^2+xy=x^3-2527757581x-48912438507580\) 2.3.0.a.1, 4.12.0-4.c.1.2, 154.6.0.?, 308.24.0.?, 728.24.0.?, $\ldots$ $[(340031/2, 149433853/2)]$
165165.t2 165165.t \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $5.366728175$ $[1, 0, 0, -923039851, 10251562482206]$ \(y^2+xy=x^3-923039851x+10251562482206\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 308.12.0.?, 364.12.0.?, $\ldots$ $[(316895/2, 166414813/2)]$
165165.t3 165165.t \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.683364087$ $[1, 0, 0, -169391956, -647542645705]$ \(y^2+xy=x^3-169391956x-647542645705\) 2.6.0.a.1, 4.12.0-2.a.1.1, 308.24.0.?, 364.24.0.?, 572.24.0.?, $\ldots$ $[(-8614, 419579)]$
165165.t4 165165.t \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/4\Z$ $1.341682043$ $[1, 0, 0, 25108889, -63690009184]$ \(y^2+xy=x^3+25108889x-63690009184\) 2.3.0.a.1, 4.12.0-4.c.1.1, 286.6.0.?, 572.24.0.?, 616.24.0.?, $\ldots$ $[(4331, 353222)]$
165165.u1 165165.u \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -18211410, -17358387903]$ \(y^2+xy=x^3-18211410x-17358387903\) 2.3.0.a.1, 4.12.0-4.c.1.2, 44.24.0-44.h.1.1, 280.24.0.?, 3080.48.0.? $[ ]$
165165.u2 165165.u \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -8089155, 8661880800]$ \(y^2+xy=x^3-8089155x+8661880800\) 2.6.0.a.1, 4.12.0-2.a.1.1, 44.24.0-44.a.1.2, 140.24.0.?, 1540.48.0.? $[ ]$
165165.u3 165165.u \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -8040150, 8774268867]$ \(y^2+xy=x^3-8040150x+8774268867\) 2.3.0.a.1, 4.12.0-4.c.1.1, 88.24.0.?, 280.24.0.?, 770.6.0.?, $\ldots$ $[ ]$
165165.u4 165165.u \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 1249020, 27489509235]$ \(y^2+xy=x^3+1249020x+27489509235\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 44.12.0-4.c.1.1, 70.6.0.a.1, $\ldots$ $[ ]$
165165.v1 165165.v \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.931153888$ $[1, 0, 0, -47495, 2905662]$ \(y^2+xy=x^3-47495x+2905662\) 2.3.0.a.1, 220.6.0.?, 364.6.0.?, 20020.12.0.? $[(439, 7948)]$
165165.v2 165165.v \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $1.862307776$ $[1, 0, 0, 7560, 296055]$ \(y^2+xy=x^3+7560x+296055\) 2.3.0.a.1, 110.6.0.?, 364.6.0.?, 20020.12.0.? $[(57, 927)]$
165165.w1 165165.w \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\mathsf{trivial}$ $1.505329014$ $[1, 0, 0, 6350, -2260675]$ \(y^2+xy=x^3+6350x-2260675\) 1092.2.0.? $[(131, 842)]$
165165.x1 165165.x \( 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 13 \) $1$ $\Z/2\Z$ $0.655770277$ $[1, 0, 0, -72905, -6758850]$ \(y^2+xy=x^3-72905x-6758850\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.z.1, 44.12.0-4.c.1.2, 264.24.0.?, $\ldots$ $[(-155, 985)]$
Next   displayed columns for results