Learn more

Refine search


Results (33 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
163370.a1 163370.a \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -9790, 375766]$ \(y^2+xy=x^3-x^2-9790x+375766\) 680.2.0.? $[ ]$
163370.b1 163370.b \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $4.103215351$ $[1, 0, 1, -6807264, 6851708462]$ \(y^2+xy+y=x^3-6807264x+6851708462\) 5270.2.0.? $[(1305, 13171)]$
163370.c1 163370.c \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $1.706032410$ $[1, 1, 0, -2314588, 1293962192]$ \(y^2+xy=x^3+x^2-2314588x+1293962192\) 3.4.0.a.1, 93.8.0.?, 1020.8.0.?, 10540.2.0.?, 31620.16.0.? $[(152, 30676)]$
163370.c2 163370.c \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $5.118097230$ $[1, 1, 0, -378173, -89204147]$ \(y^2+xy=x^3+x^2-378173x-89204147\) 3.4.0.a.1, 93.8.0.?, 1020.8.0.?, 10540.2.0.?, 31620.16.0.? $[(-17538/7, 293945/7)]$
163370.d1 163370.d \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $1.010273773$ $[1, 1, 0, -343165912, 2061168816704]$ \(y^2+xy=x^3+x^2-343165912x+2061168816704\) 10540.2.0.? $[(1888, 1190696)]$
163370.e1 163370.e \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $2$ $\mathsf{trivial}$ $0.293900880$ $[1, 1, 0, -5057, 135001]$ \(y^2+xy=x^3+x^2-5057x+135001\) 10540.2.0.? $[(-3, 389), (152, 1629)]$
163370.f1 163370.f \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -2422, -193444]$ \(y^2+xy=x^3+x^2-2422x-193444\) 3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? $[ ]$
163370.f2 163370.f \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 21603, 4943101]$ \(y^2+xy=x^3+x^2+21603x+4943101\) 3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? $[ ]$
163370.g1 163370.g \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $3.027679838$ $[1, -1, 0, -2824559, 356565901613]$ \(y^2+xy=x^3-x^2-2824559x+356565901613\) 340.2.0.? $[(17342, 2341409)]$
163370.h1 163370.h \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $2.851868892$ $[1, -1, 0, -2939, -11968155]$ \(y^2+xy=x^3-x^2-2939x-11968155\) 340.2.0.? $[(630, 15045)]$
163370.i1 163370.i \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $1.848020457$ $[1, 0, 1, -4860278, -4084996244]$ \(y^2+xy+y=x^3-4860278x-4084996244\) 10540.2.0.? $[(4885, 295467)]$
163370.j1 163370.j \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -4005948, 605363408]$ \(y^2+xy=x^3+x^2-4005948x+605363408\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[ ]$
163370.j2 163370.j \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2453933, -1480593763]$ \(y^2+xy=x^3+x^2-2453933x-1480593763\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[ ]$
163370.j3 163370.j \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -2377053, -1577600947]$ \(y^2+xy=x^3+x^2-2377053x-1577600947\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
163370.j4 163370.j \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 15675332, 4813221072]$ \(y^2+xy=x^3+x^2+15675332x+4813221072\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[ ]$
163370.k1 163370.k \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\Z/2\Z$ $7.925315918$ $[1, 1, 0, -7227, -207859]$ \(y^2+xy=x^3+x^2-7227x-207859\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 248.12.0.?, $\ldots$ $[(8482/9, 285661/9)]$
163370.k2 163370.k \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\Z/2\Z$ $3.962657959$ $[1, 1, 0, 11993, -1103511]$ \(y^2+xy=x^3+x^2+11993x-1103511\) 2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 124.12.0.?, 680.24.0.?, $\ldots$ $[(168, 2301)]$
163370.l1 163370.l \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -2557241, -1576512599]$ \(y^2+xy=x^3-2557241x-1576512599\) 5270.2.0.? $[ ]$
163370.m1 163370.m \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -51, -167]$ \(y^2+xy+y=x^3+x^2-51x-167\) 3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? $[ ]$
163370.m2 163370.m \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 259, -291]$ \(y^2+xy+y=x^3+x^2+259x-291\) 3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? $[ ]$
163370.n1 163370.n \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -6382021, 6403048779]$ \(y^2+xy+y=x^3+x^2-6382021x+6403048779\) 3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? $[ ]$
163370.n2 163370.n \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 383419, 28528203]$ \(y^2+xy+y=x^3+x^2+383419x+28528203\) 3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? $[ ]$
163370.o1 163370.o \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $5.586077188$ $[1, -1, 1, -1467, -21259]$ \(y^2+xy+y=x^3-x^2-1467x-21259\) 680.2.0.? $[(879/2, 24707/2)]$
163370.p1 163370.p \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\Z/2\Z$ $13.94283341$ $[1, -1, 1, -29643667, 62129403679]$ \(y^2+xy+y=x^3-x^2-29643667x+62129403679\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ $[(5784599/41, 1903403472/41)]$
163370.p2 163370.p \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\Z/2\Z$ $13.94283341$ $[1, -1, 1, -4849867, -2829814161]$ \(y^2+xy+y=x^3-x^2-4849867x-2829814161\) 2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.5, 248.24.0.?, 620.24.0.?, $\ldots$ $[(1086859/21, 113643272/21)]$
163370.p3 163370.p \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $6.971416707$ $[1, -1, 1, -1870767, 951259559]$ \(y^2+xy+y=x^3-x^2-1870767x+951259559\) 2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.3, 124.24.0.?, 620.48.0.? $[(1789, 56792)]$
163370.p4 163370.p \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\Z/4\Z$ $3.485708353$ $[1, -1, 1, 51233, 54069959]$ \(y^2+xy+y=x^3-x^2+51233x+54069959\) 2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.13, 62.6.0.b.1, 124.24.0.?, $\ldots$ $[(-133, 6766)]$
163370.q1 163370.q \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $7.514325694$ $[1, -1, 1, -1409487, 644594849]$ \(y^2+xy+y=x^3-x^2-1409487x+644594849\) 680.2.0.? $[(-3377/2, 284203/2)]$
163370.r1 163370.r \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 80063, -2703999]$ \(y^2+xy+y=x^3-x^2+80063x-2703999\) 5270.2.0.? $[ ]$
163370.s1 163370.s \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $1.366707786$ $[1, -1, 1, 83, 69]$ \(y^2+xy+y=x^3-x^2+83x+69\) 5270.2.0.? $[(39, 228)]$
163370.t1 163370.t \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\Z/3\Z$ $1$ $[1, 0, 0, -49031, 4332401]$ \(y^2+xy=x^3-49031x+4332401\) 3.8.0-3.a.1.2, 680.2.0.?, 2040.16.0.? $[ ]$
163370.t2 163370.t \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, 248879, 11899315]$ \(y^2+xy=x^3+248879x+11899315\) 3.8.0-3.a.1.1, 680.2.0.?, 2040.16.0.? $[ ]$
163370.u1 163370.u \( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) $1$ $\mathsf{trivial}$ $0.827298434$ $[1, -1, 1, -169797, -22512131]$ \(y^2+xy+y=x^3-x^2-169797x-22512131\) 10540.2.0.? $[(-1757/3, 50672/3)]$
  displayed columns for results