Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
163370.a1 |
163370k1 |
163370.a |
163370k |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2 \cdot 5 \cdot 17 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$609000$ |
$1.047028$ |
$-116930169/170$ |
$0.88233$ |
$3.26427$ |
$[1, -1, 0, -9790, 375766]$ |
\(y^2+xy=x^3-x^2-9790x+375766\) |
680.2.0.? |
$[ ]$ |
163370.b1 |
163370l1 |
163370.b |
163370l |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{16} \cdot 5^{5} \cdot 17 \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5270$ |
$2$ |
$0$ |
$4.103215351$ |
$1$ |
|
$2$ |
$6758400$ |
$2.707386$ |
$-39307121282620729/107929600000$ |
$0.92056$ |
$4.90003$ |
$[1, 0, 1, -6807264, 6851708462]$ |
\(y^2+xy+y=x^3-6807264x+6851708462\) |
5270.2.0.? |
$[(1305, 13171)]$ |
163370.c1 |
163370p2 |
163370.c |
163370p |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{12} \cdot 5^{3} \cdot 17^{3} \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$31620$ |
$16$ |
$0$ |
$1.706032410$ |
$1$ |
|
$4$ |
$6082560$ |
$2.565407$ |
$1545165254811529/77979136000$ |
$0.90214$ |
$4.63003$ |
$[1, 1, 0, -2314588, 1293962192]$ |
\(y^2+xy=x^3+x^2-2314588x+1293962192\) |
3.4.0.a.1, 93.8.0.?, 1020.8.0.?, 10540.2.0.?, 31620.16.0.? |
$[(152, 30676)]$ |
163370.c2 |
163370p1 |
163370.c |
163370p |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{4} \cdot 5 \cdot 17 \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$31620$ |
$16$ |
$0$ |
$5.118097230$ |
$1$ |
|
$0$ |
$2027520$ |
$2.016102$ |
$6739487929369/40515760$ |
$0.86172$ |
$4.17726$ |
$[1, 1, 0, -378173, -89204147]$ |
\(y^2+xy=x^3+x^2-378173x-89204147\) |
3.4.0.a.1, 93.8.0.?, 1020.8.0.?, 10540.2.0.?, 31620.16.0.? |
$[(-17538/7, 293945/7)]$ |
163370.d1 |
163370m1 |
163370.d |
163370m |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{8} \cdot 5^{7} \cdot 17^{5} \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10540$ |
$2$ |
$0$ |
$1.010273773$ |
$1$ |
|
$4$ |
$64512000$ |
$3.877930$ |
$5035771024411098786121/845979197740000000$ |
$0.97715$ |
$5.87938$ |
$[1, 1, 0, -343165912, 2061168816704]$ |
\(y^2+xy=x^3+x^2-343165912x+2061168816704\) |
10540.2.0.? |
$[(1888, 1190696)]$ |
163370.e1 |
163370n1 |
163370.e |
163370n |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{2} \cdot 5^{7} \cdot 17 \cdot 31^{3} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10540$ |
$2$ |
$0$ |
$0.293900880$ |
$1$ |
|
$18$ |
$186368$ |
$0.963384$ |
$480232637191/5312500$ |
$0.88606$ |
$3.09898$ |
$[1, 1, 0, -5057, 135001]$ |
\(y^2+xy=x^3+x^2-5057x+135001\) |
10540.2.0.? |
$[(-3, 389), (152, 1629)]$ |
163370.f1 |
163370o1 |
163370.f |
163370o |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{3} \cdot 5^{3} \cdot 17 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$63240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$368280$ |
$1.211092$ |
$-1771561/17000$ |
$0.99970$ |
$3.15386$ |
$[1, 1, 0, -2422, -193444]$ |
\(y^2+xy=x^3+x^2-2422x-193444\) |
3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? |
$[ ]$ |
163370.f2 |
163370o2 |
163370.f |
163370o |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{9} \cdot 5 \cdot 17^{3} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$63240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1104840$ |
$1.760399$ |
$1256216039/12577280$ |
$0.94869$ |
$3.69438$ |
$[1, 1, 0, 21603, 4943101]$ |
\(y^2+xy=x^3+x^2+21603x+4943101\) |
3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? |
$[ ]$ |
163370.g1 |
163370q1 |
163370.g |
163370q |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{22} \cdot 5^{5} \cdot 17^{3} \cdot 31^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$340$ |
$2$ |
$0$ |
$3.027679838$ |
$1$ |
|
$2$ |
$38055600$ |
$3.617897$ |
$-2922013380681/64395673600000$ |
$1.07900$ |
$5.55848$ |
$[1, -1, 0, -2824559, 356565901613]$ |
\(y^2+xy=x^3-x^2-2824559x+356565901613\) |
340.2.0.? |
$[(17342, 2341409)]$ |
163370.h1 |
163370r1 |
163370.h |
163370r |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{22} \cdot 5^{5} \cdot 17^{3} \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$340$ |
$2$ |
$0$ |
$2.851868892$ |
$1$ |
|
$2$ |
$1227600$ |
$1.900904$ |
$-2922013380681/64395673600000$ |
$1.07900$ |
$3.84202$ |
$[1, -1, 0, -2939, -11968155]$ |
\(y^2+xy=x^3-x^2-2939x-11968155\) |
340.2.0.? |
$[(630, 15045)]$ |
163370.i1 |
163370s1 |
163370.i |
163370s |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{2} \cdot 5^{7} \cdot 17 \cdot 31^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10540$ |
$2$ |
$0$ |
$1.848020457$ |
$1$ |
|
$2$ |
$5777408$ |
$2.680378$ |
$480232637191/5312500$ |
$0.88606$ |
$4.81544$ |
$[1, 0, 1, -4860278, -4084996244]$ |
\(y^2+xy+y=x^3-4860278x-4084996244\) |
10540.2.0.? |
$[(4885, 295467)]$ |
163370.j1 |
163370u3 |
163370.j |
163370u |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{24} \cdot 5^{6} \cdot 17 \cdot 31^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$63240$ |
$384$ |
$9$ |
$1$ |
$9$ |
$3$ |
$1$ |
$14688000$ |
$2.834469$ |
$8010684753304969/4456448000000$ |
$1.04256$ |
$4.76712$ |
$[1, 1, 0, -4005948, 605363408]$ |
\(y^2+xy=x^3+x^2-4005948x+605363408\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[ ]$ |
163370.j2 |
163370u1 |
163370.j |
163370u |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{8} \cdot 5^{2} \cdot 17^{3} \cdot 31^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$63240$ |
$384$ |
$9$ |
$1$ |
$9$ |
$3$ |
$1$ |
$4896000$ |
$2.285164$ |
$1841373668746009/31443200$ |
$0.98941$ |
$4.64464$ |
$[1, 1, 0, -2453933, -1480593763]$ |
\(y^2+xy=x^3+x^2-2453933x-1480593763\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[ ]$ |
163370.j3 |
163370u2 |
163370.j |
163370u |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{4} \cdot 5^{4} \cdot 17^{6} \cdot 31^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$63240$ |
$384$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$9792000$ |
$2.631737$ |
$-1673672305534489/241375690000$ |
$0.99210$ |
$4.65522$ |
$[1, 1, 0, -2377053, -1577600947]$ |
\(y^2+xy=x^3+x^2-2377053x-1577600947\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[ ]$ |
163370.j4 |
163370u4 |
163370.j |
163370u |
$4$ |
$6$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{12} \cdot 5^{12} \cdot 17^{2} \cdot 31^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$63240$ |
$384$ |
$9$ |
$1$ |
$9$ |
$3$ |
$0$ |
$29376000$ |
$3.181046$ |
$479958568556831351/289000000000000$ |
$1.05690$ |
$5.10809$ |
$[1, 1, 0, 15675332, 4813221072]$ |
\(y^2+xy=x^3+x^2+15675332x+4813221072\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[ ]$ |
163370.k1 |
163370t1 |
163370.k |
163370t |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{4} \cdot 5^{2} \cdot 17 \cdot 31^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$21080$ |
$48$ |
$0$ |
$7.925315918$ |
$1$ |
|
$1$ |
$489600$ |
$1.177702$ |
$47045881/6800$ |
$0.98870$ |
$3.18821$ |
$[1, 1, 0, -7227, -207859]$ |
\(y^2+xy=x^3+x^2-7227x-207859\) |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 248.12.0.?, $\ldots$ |
$[(8482/9, 285661/9)]$ |
163370.k2 |
163370t2 |
163370.k |
163370t |
$2$ |
$2$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{2} \cdot 5^{4} \cdot 17^{2} \cdot 31^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$21080$ |
$48$ |
$0$ |
$3.962657959$ |
$1$ |
|
$2$ |
$979200$ |
$1.524277$ |
$214921799/722500$ |
$0.91035$ |
$3.44560$ |
$[1, 1, 0, 11993, -1103511]$ |
\(y^2+xy=x^3+x^2+11993x-1103511\) |
2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 124.12.0.?, 680.24.0.?, $\ldots$ |
$[(168, 2301)]$ |
163370.l1 |
163370a1 |
163370.l |
163370a |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{4} \cdot 5 \cdot 17^{5} \cdot 31^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5270$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8140800$ |
$2.443985$ |
$-2083859989441489/3521245360$ |
$0.90303$ |
$4.65519$ |
$[1, 0, 0, -2557241, -1576512599]$ |
\(y^2+xy=x^3-2557241x-1576512599\) |
5270.2.0.? |
$[ ]$ |
163370.m1 |
163370b1 |
163370.m |
163370b |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{3} \cdot 5 \cdot 17 \cdot 31^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$63240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$29160$ |
$-0.119390$ |
$-15284209/680$ |
$0.74359$ |
$1.95642$ |
$[1, 1, 1, -51, -167]$ |
\(y^2+xy+y=x^3+x^2-51x-167\) |
3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? |
$[ ]$ |
163370.m2 |
163370b2 |
163370.m |
163370b |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2 \cdot 5^{3} \cdot 17^{3} \cdot 31^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$63240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$87480$ |
$0.429916$ |
$1998917231/1228250$ |
$0.85978$ |
$2.35625$ |
$[1, 1, 1, 259, -291]$ |
\(y^2+xy+y=x^3+x^2+259x-291\) |
3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? |
$[ ]$ |
163370.n1 |
163370c2 |
163370.n |
163370c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{7} \cdot 5^{9} \cdot 17^{3} \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$63240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7552440$ |
$2.806767$ |
$-32391289681150609/1228250000000$ |
$1.00352$ |
$4.88880$ |
$[1, 1, 1, -6382021, 6403048779]$ |
\(y^2+xy+y=x^3+x^2-6382021x+6403048779\) |
3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? |
$[ ]$ |
163370.n2 |
163370c1 |
163370.n |
163370c |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{21} \cdot 5^{3} \cdot 17 \cdot 31^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$63240$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2517480$ |
$2.257462$ |
$7023836099951/4456448000$ |
$0.99857$ |
$4.18071$ |
$[1, 1, 1, 383419, 28528203]$ |
\(y^2+xy+y=x^3+x^2+383419x+28528203\) |
3.4.0.a.1, 93.8.0.?, 680.2.0.?, 2040.8.0.?, 63240.16.0.? |
$[ ]$ |
163370.o1 |
163370d1 |
163370.o |
163370d |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2 \cdot 5^{5} \cdot 17 \cdot 31^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.586077188$ |
$1$ |
|
$0$ |
$67200$ |
$0.516061$ |
$-363089003841/106250$ |
$0.92504$ |
$2.78966$ |
$[1, -1, 1, -1467, -21259]$ |
\(y^2+xy+y=x^3-x^2-1467x-21259\) |
680.2.0.? |
$[(879/2, 24707/2)]$ |
163370.p1 |
163370e3 |
163370.p |
163370e |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{2} \cdot 5 \cdot 17^{2} \cdot 31^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$1240$ |
$48$ |
$0$ |
$13.94283341$ |
$1$ |
|
$0$ |
$9830400$ |
$2.846569$ |
$3246005963775014721/5337951380$ |
$0.96407$ |
$5.26733$ |
$[1, -1, 1, -29643667, 62129403679]$ |
\(y^2+xy+y=x^3-x^2-29643667x+62129403679\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 10.6.0.a.1, 20.12.0.g.1, $\ldots$ |
$[(5784599/41, 1903403472/41)]$ |
163370.p2 |
163370e4 |
163370.p |
163370e |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{2} \cdot 5 \cdot 17^{8} \cdot 31^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$1240$ |
$48$ |
$0$ |
$13.94283341$ |
$1$ |
|
$0$ |
$9830400$ |
$2.846569$ |
$14214871952803521/4324969613420$ |
$1.00591$ |
$4.81490$ |
$[1, -1, 1, -4849867, -2829814161]$ |
\(y^2+xy+y=x^3-x^2-4849867x-2829814161\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 40.24.0-40.z.1.5, 248.24.0.?, 620.24.0.?, $\ldots$ |
$[(1086859/21, 113643272/21)]$ |
163370.p3 |
163370e2 |
163370.p |
163370e |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{4} \cdot 5^{2} \cdot 17^{4} \cdot 31^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$620$ |
$48$ |
$0$ |
$6.971416707$ |
$1$ |
|
$4$ |
$4915200$ |
$2.499996$ |
$815853972965121/32105472400$ |
$0.98058$ |
$4.57683$ |
$[1, -1, 1, -1870767, 951259559]$ |
\(y^2+xy+y=x^3-x^2-1870767x+951259559\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 20.24.0-20.b.1.3, 124.24.0.?, 620.48.0.? |
$[(1789, 56792)]$ |
163370.p4 |
163370e1 |
163370.p |
163370e |
$4$ |
$4$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{8} \cdot 5^{4} \cdot 17^{2} \cdot 31^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$1240$ |
$48$ |
$0$ |
$3.485708353$ |
$1$ |
|
$7$ |
$2457600$ |
$2.153423$ |
$16757562879/1433440000$ |
$0.92169$ |
$4.09331$ |
$[1, -1, 1, 51233, 54069959]$ |
\(y^2+xy+y=x^3-x^2+51233x+54069959\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 40.24.0-40.z.1.13, 62.6.0.b.1, 124.24.0.?, $\ldots$ |
$[(-133, 6766)]$ |
163370.q1 |
163370f1 |
163370.q |
163370f |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2 \cdot 5^{5} \cdot 17 \cdot 31^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$7.514325694$ |
$1$ |
|
$0$ |
$2083200$ |
$2.233055$ |
$-363089003841/106250$ |
$0.92504$ |
$4.50611$ |
$[1, -1, 1, -1409487, 644594849]$ |
\(y^2+xy+y=x^3-x^2-1409487x+644594849\) |
680.2.0.? |
$[(-3377/2, 284203/2)]$ |
163370.r1 |
163370g1 |
163370.r |
163370g |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{4} \cdot 5 \cdot 17 \cdot 31^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5270$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$984064$ |
$1.865767$ |
$2146689/1360$ |
$0.84694$ |
$3.78925$ |
$[1, -1, 1, 80063, -2703999]$ |
\(y^2+xy+y=x^3-x^2+80063x-2703999\) |
5270.2.0.? |
$[ ]$ |
163370.s1 |
163370h1 |
163370.s |
163370h |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{4} \cdot 5 \cdot 17 \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$5270$ |
$2$ |
$0$ |
$1.366707786$ |
$1$ |
|
$2$ |
$31744$ |
$0.148773$ |
$2146689/1360$ |
$0.84694$ |
$2.07280$ |
$[1, -1, 1, 83, 69]$ |
\(y^2+xy+y=x^3-x^2+83x+69\) |
5270.2.0.? |
$[(39, 228)]$ |
163370.t1 |
163370i1 |
163370.t |
163370i |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2^{3} \cdot 5 \cdot 17 \cdot 31^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$2040$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$2$ |
$903960$ |
$1.597603$ |
$-15284209/680$ |
$0.74359$ |
$3.67287$ |
$[1, 0, 0, -49031, 4332401]$ |
\(y^2+xy=x^3-49031x+4332401\) |
3.8.0-3.a.1.2, 680.2.0.?, 2040.16.0.? |
$[ ]$ |
163370.t2 |
163370i2 |
163370.t |
163370i |
$2$ |
$3$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( - 2 \cdot 5^{3} \cdot 17^{3} \cdot 31^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$2040$ |
$16$ |
$0$ |
$1$ |
$9$ |
$3$ |
$0$ |
$2711880$ |
$2.146908$ |
$1998917231/1228250$ |
$0.85978$ |
$4.07270$ |
$[1, 0, 0, 248879, 11899315]$ |
\(y^2+xy=x^3+248879x+11899315\) |
3.8.0-3.a.1.1, 680.2.0.?, 2040.16.0.? |
$[ ]$ |
163370.u1 |
163370j1 |
163370.u |
163370j |
$1$ |
$1$ |
\( 2 \cdot 5 \cdot 17 \cdot 31^{2} \) |
\( 2^{6} \cdot 5^{5} \cdot 17 \cdot 31^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$10540$ |
$2$ |
$0$ |
$0.827298434$ |
$1$ |
|
$0$ |
$3225600$ |
$1.976633$ |
$610015948641/105400000$ |
$0.86035$ |
$3.97714$ |
$[1, -1, 1, -169797, -22512131]$ |
\(y^2+xy+y=x^3-x^2-169797x-22512131\) |
10540.2.0.? |
$[(-1757/3, 50672/3)]$ |