Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 146 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
160080.a1 160080.a \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -47581, 3759025]$ \(y^2=x^3-x^2-47581x+3759025\) 3.4.0.a.1, 12.8.0-3.a.1.2, 20010.8.0.?, 40020.16.0.? $[ ]$
160080.a2 160080.a \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -8941, -321359]$ \(y^2=x^3-x^2-8941x-321359\) 3.4.0.a.1, 12.8.0-3.a.1.1, 20010.8.0.?, 40020.16.0.? $[ ]$
160080.b1 160080.b \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $6.182012746$ $[0, -1, 0, -42696, -3381504]$ \(y^2=x^3-x^2-42696x-3381504\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.5, 92.12.0.?, 348.12.0.?, $\ldots$ $[(365, 5434)]$
160080.b2 160080.b \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $1.545503186$ $[0, -1, 0, -4976, 53040]$ \(y^2=x^3-x^2-4976x+53040\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 92.12.0.?, 460.24.0.?, $\ldots$ $[(94, 638)]$
160080.b3 160080.b \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.091006373$ $[0, -1, 0, -2676, -51840]$ \(y^2=x^3-x^2-2676x-51840\) 2.6.0.a.1, 20.12.0-2.a.1.1, 92.12.0.?, 348.12.0.?, 460.24.0.?, $\ldots$ $[(89, 638)]$
160080.b4 160080.b \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $6.182012746$ $[0, -1, 0, -31, -2114]$ \(y^2=x^3-x^2-31x-2114\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 184.12.0.?, 348.12.0.?, $\ldots$ $[(345/4, 5269/4)]$
160080.c1 160080.c \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $2$ $\Z/2\Z$ $1.661972735$ $[0, -1, 0, -3496, -24080]$ \(y^2=x^3-x^2-3496x-24080\) 2.3.0.a.1, 24.6.0.a.1, 13340.6.0.?, 80040.12.0.? $[(-36, 232), (-30, 230)]$
160080.c2 160080.c \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $2$ $\Z/2\Z$ $6.647890942$ $[0, -1, 0, 824, -3344]$ \(y^2=x^3-x^2+824x-3344\) 2.3.0.a.1, 24.6.0.d.1, 6670.6.0.?, 80040.12.0.? $[(20, 144), (29, 210)]$
160080.d1 160080.d \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $2.165480152$ $[0, -1, 0, -177096, 13824720]$ \(y^2=x^3-x^2-177096x+13824720\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.2, 24.24.0-24.s.1.3, $\ldots$ $[(74, 1058)]$
160080.d2 160080.d \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.082740076$ $[0, -1, 0, -150096, 22421520]$ \(y^2=x^3-x^2-150096x+22421520\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.3, 2668.12.0.?, $\ldots$ $[(128, 2300)]$
160080.d3 160080.d \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $2.165480152$ $[0, -1, 0, -150076, 22427776]$ \(y^2=x^3-x^2-150076x+22427776\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.1, 24.24.0-24.y.1.10, $\ldots$ $[(225, 26)]$
160080.d4 160080.d \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $2.165480152$ $[0, -1, 0, -123416, 30617616]$ \(y^2=x^3-x^2-123416x+30617616\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 24.24.0-24.y.1.16, 2668.12.0.?, $\ldots$ $[(186, 3750)]$
160080.e1 160080.e \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -506661, 138978765]$ \(y^2=x^3-x^2-506661x+138978765\) 20010.2.0.? $[ ]$
160080.f1 160080.f \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 30120524, 299591292235]$ \(y^2=x^3-x^2+30120524x+299591292235\) 174.2.0.? $[ ]$
160080.g1 160080.g \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $4.872912937$ $[0, -1, 0, -101425056, 393313049856]$ \(y^2=x^3-x^2-101425056x+393313049856\) 3.4.0.a.1, 12.8.0-3.a.1.2, 80040.16.0.? $[(6050, 33166)]$
160080.g2 160080.g \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\mathsf{trivial}$ $14.61873881$ $[0, -1, 0, 751584, 2042023680]$ \(y^2=x^3-x^2+751584x+2042023680\) 3.4.0.a.1, 12.8.0-3.a.1.1, 80040.16.0.? $[(-1782814/47, 3130398866/47)]$
160080.h1 160080.h \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -12367376, 16739117376]$ \(y^2=x^3-x^2-12367376x+16739117376\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 92.6.0.?, $\ldots$ $[ ]$
160080.h2 160080.h \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -660656, 340344000]$ \(y^2=x^3-x^2-660656x+340344000\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.9, 46.6.0.a.1, $\ldots$ $[ ]$
160080.h3 160080.h \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -433136, -80746560]$ \(y^2=x^3-x^2-433136x-80746560\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 92.6.0.?, $\ldots$ $[ ]$
160080.h4 160080.h \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 67984, -8184384]$ \(y^2=x^3-x^2+67984x-8184384\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0-6.a.1.3, 46.6.0.a.1, $\ldots$ $[ ]$
160080.i1 160080.i \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -12536, -556944]$ \(y^2=x^3-x^2-12536x-556944\) 3.4.0.a.1, 12.8.0-3.a.1.1, 80040.16.0.? $[ ]$
160080.i2 160080.i \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, 64024, -1514640]$ \(y^2=x^3-x^2+64024x-1514640\) 3.4.0.a.1, 12.8.0-3.a.1.2, 80040.16.0.? $[ ]$
160080.j1 160080.j \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -169563381, 849914477181]$ \(y^2=x^3-x^2-169563381x+849914477181\) 1334.2.0.? $[ ]$
160080.k1 160080.k \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -443576, -109601424]$ \(y^2=x^3-x^2-443576x-109601424\) 2.3.0.a.1, 20.6.0.b.1, 4002.6.0.?, 40020.12.0.? $[ ]$
160080.k2 160080.k \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 196424, -400417424]$ \(y^2=x^3-x^2+196424x-400417424\) 2.3.0.a.1, 20.6.0.a.1, 8004.6.0.?, 40020.12.0.? $[ ]$
160080.l1 160080.l \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5976, -175824]$ \(y^2=x^3-x^2-5976x-175824\) 2.3.0.a.1, 20.6.0.b.1, 4002.6.0.?, 40020.12.0.? $[ ]$
160080.l2 160080.l \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5576, -200784]$ \(y^2=x^3-x^2-5576x-200784\) 2.3.0.a.1, 20.6.0.a.1, 8004.6.0.?, 40020.12.0.? $[ ]$
160080.m1 160080.m \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -591, -1170]$ \(y^2=x^3-x^2-591x-1170\) 2.3.0.a.1, 58.6.0.a.1, 92.6.0.?, 2668.12.0.? $[ ]$
160080.m2 160080.m \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 2284, -11520]$ \(y^2=x^3-x^2+2284x-11520\) 2.3.0.a.1, 46.6.0.a.1, 116.6.0.?, 2668.12.0.? $[ ]$
160080.n1 160080.n \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -38064981, 90268717725]$ \(y^2=x^3-x^2-38064981x+90268717725\) 3.4.0.a.1, 12.8.0-3.a.1.2, 20010.8.0.?, 40020.16.0.? $[ ]$
160080.n2 160080.n \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1984341, -958023459]$ \(y^2=x^3-x^2-1984341x-958023459\) 3.4.0.a.1, 12.8.0-3.a.1.1, 20010.8.0.?, 40020.16.0.? $[ ]$
160080.o1 160080.o \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $2$ $\Z/2\Z$ $4.129207017$ $[0, -1, 0, -805096, -97358480]$ \(y^2=x^3-x^2-805096x-97358480\) 2.3.0.a.1, 24.6.0.a.1, 580.6.0.?, 3480.12.0.? $[(1620, 53360), (-172, 6000)]$
160080.o2 160080.o \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $2$ $\Z/2\Z$ $16.51682806$ $[0, -1, 0, -649576, -201121424]$ \(y^2=x^3-x^2-649576x-201121424\) 2.3.0.a.1, 24.6.0.d.1, 290.6.0.?, 3480.12.0.? $[(1124, 22080), (3898, 237654)]$
160080.p1 160080.p \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1776, 41760]$ \(y^2=x^3-x^2-1776x+41760\) 80040.2.0.? $[ ]$
160080.q1 160080.q \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -1667323861, -8658837177635]$ \(y^2=x^3-x^2-1667323861x-8658837177635\) 20010.2.0.? $[ ]$
160080.r1 160080.r \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -94909896, 355921290000]$ \(y^2=x^3-x^2-94909896x+355921290000\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 20.12.0-4.c.1.2, 24.24.0-24.y.1.16, $\ldots$ $[ ]$
160080.r2 160080.r \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -6503416, 4426977616]$ \(y^2=x^3-x^2-6503416x+4426977616\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 12.12.0-4.c.1.2, 24.24.0-24.s.1.3, $\ldots$ $[ ]$
160080.r3 160080.r \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -5932096, 5562304720]$ \(y^2=x^3-x^2-5932096x+5562304720\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 20.12.0-2.a.1.1, 24.24.0-24.b.1.3, $\ldots$ $[ ]$
160080.r4 160080.r \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -335276, 104285856]$ \(y^2=x^3-x^2-335276x+104285856\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.1, 20.12.0-4.c.1.1, $\ldots$ $[ ]$
160080.s1 160080.s \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -2276936, -1321676304]$ \(y^2=x^3-x^2-2276936x-1321676304\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ $[ ]$
160080.s2 160080.s \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -142536, -20546064]$ \(y^2=x^3-x^2-142536x-20546064\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 2668.12.0.?, $\ldots$ $[ ]$
160080.s3 160080.s \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -56136, -45291024]$ \(y^2=x^3-x^2-56136x-45291024\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$ $[ ]$
160080.s4 160080.s \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -14536, 138736]$ \(y^2=x^3-x^2-14536x+138736\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$ $[ ]$
160080.t1 160080.t \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -84296, 9339120]$ \(y^2=x^3-x^2-84296x+9339120\) 2.3.0.a.1, 58.6.0.a.1, 92.6.0.?, 2668.12.0.? $[ ]$
160080.t2 160080.t \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -776, 385776]$ \(y^2=x^3-x^2-776x+385776\) 2.3.0.a.1, 46.6.0.a.1, 116.6.0.?, 2668.12.0.? $[ ]$
160080.u1 160080.u \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $1.385505264$ $[0, -1, 0, -500, 0]$ \(y^2=x^3-x^2-500x\) 2.3.0.a.1, 20.6.0.b.1, 4002.6.0.?, 40020.12.0.? $[(25, 50)]$
160080.u2 160080.u \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $1$ $\Z/2\Z$ $0.692752632$ $[0, -1, 0, 2000, -2000]$ \(y^2=x^3-x^2+2000x-2000\) 2.3.0.a.1, 20.6.0.a.1, 8004.6.0.?, 40020.12.0.? $[(70, 690)]$
160080.v1 160080.v \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/4\Z$ $1$ $[0, -1, 0, -1090400, 438557952]$ \(y^2=x^3-x^2-1090400x+438557952\) 2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.s.1.2, 1160.24.0.?, 3480.48.0.? $[ ]$
160080.v2 160080.v \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -74720, 5472000]$ \(y^2=x^3-x^2-74720x+5472000\) 2.6.0.a.1, 4.12.0-2.a.1.1, 24.24.0-24.b.1.1, 580.24.0.?, 3480.48.0.? $[ ]$
160080.v3 160080.v \( 2^{4} \cdot 3 \cdot 5 \cdot 23 \cdot 29 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -28640, -1790208]$ \(y^2=x^3-x^2-28640x-1790208\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.y.1.12, 290.6.0.?, 580.24.0.?, $\ldots$ $[ ]$
Next   displayed columns for results