| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 152421.a1 |
152421a1 |
152421.a |
152421a |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{5} \cdot 23^{3} \cdot 47^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$138$ |
$2$ |
$0$ |
$0.411922925$ |
$1$ |
|
$18$ |
$126720$ |
$0.596482$ |
$13268119552/2956581$ |
$0.87751$ |
$2.59828$ |
$[0, 1, 1, -642, -5128]$ |
\(y^2+y=x^3+x^2-642x-5128\) |
138.2.0.? |
$[(33, 103), (-13, 34)]$ |
$1$ |
| 152421.b1 |
152421b1 |
152421.b |
152421b |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{5} \cdot 23^{3} \cdot 47^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$138$ |
$2$ |
$0$ |
$7.070180345$ |
$1$ |
|
$0$ |
$5955840$ |
$2.521557$ |
$13268119552/2956581$ |
$0.87751$ |
$4.53394$ |
$[0, 1, 1, -1418914, 509679604]$ |
\(y^2+y=x^3+x^2-1418914x+509679604\) |
138.2.0.? |
$[(3749/2, 15989/2)]$ |
$1$ |
| 152421.c1 |
152421e3 |
152421.c |
152421e |
$4$ |
$4$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{6} \cdot 23^{4} \cdot 47^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$8648$ |
$48$ |
$0$ |
$7.999286176$ |
$1$ |
|
$4$ |
$25012224$ |
$3.393913$ |
$674954705500996959793/9588192183$ |
$0.98392$ |
$5.95439$ |
$[1, 1, 1, -403688169, 3121718519400]$ |
\(y^2+xy+y=x^3+x^2-403688169x+3121718519400\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 184.24.0.?, 188.24.0.?, 8648.48.0.? |
$[(-19041, 1985703)]$ |
$1$ |
| 152421.c2 |
152421e4 |
152421.c |
152421e |
$4$ |
$4$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{24} \cdot 23 \cdot 47^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$8648$ |
$48$ |
$0$ |
$31.99714470$ |
$1$ |
|
$0$ |
$25012224$ |
$3.393913$ |
$527860858731041233/305306328935961$ |
$1.09043$ |
$5.35498$ |
$[1, 1, 1, -37192979, -2067205984]$ |
\(y^2+xy+y=x^3+x^2-37192979x-2067205984\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 184.24.0.?, 376.24.0.?, 2162.6.0.?, $\ldots$ |
$[(-48779132316911/98112, 226503338558777005657/98112)]$ |
$1$ |
| 152421.c3 |
152421e2 |
152421.c |
152421e |
$4$ |
$4$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{12} \cdot 23^{2} \cdot 47^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$4324$ |
$48$ |
$0$ |
$15.99857235$ |
$1$ |
|
$2$ |
$12506112$ |
$3.047340$ |
$165231457514151553/621021226401$ |
$0.98614$ |
$5.25766$ |
$[1, 1, 1, -25253334, 48676285266]$ |
\(y^2+xy+y=x^3+x^2-25253334x+48676285266\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 92.24.0.?, 188.24.0.?, 4324.48.0.? |
$[(-25372213/73, 97014514050/73)]$ |
$1$ |
| 152421.c4 |
152421e1 |
152421.c |
152421e |
$4$ |
$4$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{6} \cdot 23 \cdot 47^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$8648$ |
$48$ |
$0$ |
$7.999286176$ |
$1$ |
|
$1$ |
$6253056$ |
$2.700768$ |
$-6411014266033/81817611327$ |
$0.93432$ |
$4.66950$ |
$[1, 1, 1, -854929, 1460491910]$ |
\(y^2+xy+y=x^3+x^2-854929x+1460491910\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 46.6.0.a.1, 92.12.0.?, $\ldots$ |
$[(408824/19, 298711503/19)]$ |
$1$ |
| 152421.d1 |
152421c2 |
152421.d |
152421c |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{2} \cdot 23^{4} \cdot 47^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$25944$ |
$48$ |
$1$ |
$2.335811913$ |
$1$ |
|
$6$ |
$156672$ |
$0.886082$ |
$5592359375/2518569$ |
$0.96770$ |
$2.84850$ |
$[1, 0, 0, -1738, 12989]$ |
\(y^2+xy=x^3-1738x+12989\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 184.12.0.?, 188.12.0.?, $\ldots$ |
$[(-4, 143), (-44, 91)]$ |
$1$ |
| 152421.d2 |
152421c1 |
152421.d |
152421c |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{4} \cdot 23^{2} \cdot 47^{3} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$25944$ |
$48$ |
$1$ |
$2.335811913$ |
$1$ |
|
$11$ |
$78336$ |
$0.539508$ |
$57066625/42849$ |
$0.85759$ |
$2.46432$ |
$[1, 0, 0, 377, 1568]$ |
\(y^2+xy=x^3+377x+1568\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 92.12.0.?, 94.6.0.?, $\ldots$ |
$[(-1, 35), (71, 587)]$ |
$1$ |
| 152421.e1 |
152421d2 |
152421.e |
152421d |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{2} \cdot 23^{4} \cdot 47^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$25944$ |
$48$ |
$1$ |
$15.28826786$ |
$1$ |
|
$0$ |
$7363584$ |
$2.811157$ |
$5592359375/2518569$ |
$0.96770$ |
$4.78415$ |
$[1, 0, 0, -3839288, -1363914039]$ |
\(y^2+xy=x^3-3839288x-1363914039\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 184.12.0.?, 188.12.0.?, $\ldots$ |
$[(6185848/37, 13622499523/37)]$ |
$1$ |
| 152421.e2 |
152421d1 |
152421.e |
152421d |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{4} \cdot 23^{2} \cdot 47^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$25944$ |
$48$ |
$1$ |
$7.644133932$ |
$1$ |
|
$3$ |
$3681792$ |
$2.464581$ |
$57066625/42849$ |
$0.85759$ |
$4.39997$ |
$[1, 0, 0, 832747, -159463416]$ |
\(y^2+xy=x^3+832747x-159463416\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 92.12.0.?, 94.6.0.?, $\ldots$ |
$[(4291, 284956)]$ |
$1$ |
| 152421.f1 |
152421g1 |
152421.f |
152421g |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3 \cdot 23 \cdot 47^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$138$ |
$2$ |
$0$ |
$1.609854814$ |
$1$ |
|
$8$ |
$17664$ |
$-0.242973$ |
$1540096/69$ |
$0.73204$ |
$1.83902$ |
$[0, -1, 1, -31, 75]$ |
\(y^2+y=x^3-x^2-31x+75\) |
138.2.0.? |
$[(3, 0), (5, 4)]$ |
$1$ |
| 152421.g1 |
152421h1 |
152421.g |
152421h |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{5} \cdot 23 \cdot 47^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6486$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$69120$ |
$0.367309$ |
$4096000/5589$ |
$0.84283$ |
$2.26923$ |
$[0, -1, 1, 157, 827]$ |
\(y^2+y=x^3-x^2+157x+827\) |
6486.2.0.? |
$[ ]$ |
$1$ |
| 152421.h1 |
152421i1 |
152421.h |
152421i |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{5} \cdot 23 \cdot 47^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6486$ |
$2$ |
$0$ |
$23.44060738$ |
$1$ |
|
$0$ |
$3248640$ |
$2.292381$ |
$4096000/5589$ |
$0.84283$ |
$4.20488$ |
$[0, -1, 1, 346077, -91428649]$ |
\(y^2+y=x^3-x^2+346077x-91428649\) |
6486.2.0.? |
$[(4512122339639/34085, 9685231032580283512/34085)]$ |
$1$ |
| 152421.i1 |
152421j1 |
152421.i |
152421j |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3 \cdot 23 \cdot 47^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$138$ |
$2$ |
$0$ |
$12.77779544$ |
$1$ |
|
$0$ |
$830208$ |
$1.682100$ |
$1540096/69$ |
$0.73204$ |
$3.77468$ |
$[0, -1, 1, -69215, -6709081]$ |
\(y^2+y=x^3-x^2-69215x-6709081\) |
138.2.0.? |
$[(353661/2, 210317963/2)]$ |
$1$ |
| 152421.j1 |
152421f1 |
152421.j |
152421f |
$2$ |
$3$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{3} \cdot 23 \cdot 47^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6486$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$812544$ |
$1.893345$ |
$-1231925248000/29187$ |
$0.89592$ |
$4.26838$ |
$[0, 1, 1, -493343, -133541434]$ |
\(y^2+y=x^3+x^2-493343x-133541434\) |
3.4.0.a.1, 138.8.0.?, 141.8.0.?, 6486.16.0.? |
$[ ]$ |
$1$ |
| 152421.j2 |
152421f2 |
152421.j |
152421f |
$2$ |
$3$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3 \cdot 23^{3} \cdot 47^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6486$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2437632$ |
$2.442650$ |
$-43614208000/3789643323$ |
$0.99585$ |
$4.40892$ |
$[0, 1, 1, -161993, -308580385]$ |
\(y^2+y=x^3+x^2-161993x-308580385\) |
3.4.0.a.1, 138.8.0.?, 141.8.0.?, 6486.16.0.? |
$[ ]$ |
$1$ |
| 152421.k1 |
152421l2 |
152421.k |
152421l |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{3} \cdot 23^{2} \cdot 47^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$12972$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1695744$ |
$2.115688$ |
$510657175657/31551147$ |
$0.86444$ |
$4.19458$ |
$[1, 1, 0, -367844, 81003993]$ |
\(y^2+xy=x^3+x^2-367844x+81003993\) |
2.3.0.a.1, 12.6.0.a.1, 4324.6.0.?, 12972.12.0.? |
$[ ]$ |
$1$ |
| 152421.k2 |
152421l1 |
152421.k |
152421l |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{6} \cdot 23 \cdot 47^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$12972$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$847872$ |
$1.769115$ |
$3463512697/788049$ |
$0.81862$ |
$3.77618$ |
$[1, 1, 0, -69629, -5538000]$ |
\(y^2+xy=x^3+x^2-69629x-5538000\) |
2.3.0.a.1, 12.6.0.b.1, 2162.6.0.?, 12972.12.0.? |
$[ ]$ |
$1$ |
| 152421.l1 |
152421k2 |
152421.l |
152421k |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3 \cdot 23^{2} \cdot 47^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$423936$ |
$1.397680$ |
$413493625/1587$ |
$0.92463$ |
$3.59809$ |
$[1, 0, 1, -34286, 2432537]$ |
\(y^2+xy+y=x^3-34286x+2432537\) |
2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? |
$[ ]$ |
$1$ |
| 152421.l2 |
152421k1 |
152421.l |
152421k |
$2$ |
$2$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( - 3^{2} \cdot 23 \cdot 47^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$276$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$211968$ |
$1.051107$ |
$-15625/207$ |
$0.99061$ |
$3.01071$ |
$[1, 0, 1, -1151, 73325]$ |
\(y^2+xy+y=x^3-1151x+73325\) |
2.3.0.a.1, 12.6.0.b.1, 46.6.0.a.1, 276.12.0.? |
$[ ]$ |
$1$ |
| 152421.m1 |
152421m1 |
152421.m |
152421m |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{3} \cdot 23 \cdot 47^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$138$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$126720$ |
$0.567578$ |
$9048064/621$ |
$0.80984$ |
$2.63261$ |
$[0, -1, 1, -736, -6975]$ |
\(y^2+y=x^3-x^2-736x-6975\) |
138.2.0.? |
$[ ]$ |
$1$ |
| 152421.n1 |
152421n1 |
152421.n |
152421n |
$1$ |
$1$ |
\( 3 \cdot 23 \cdot 47^{2} \) |
\( 3^{3} \cdot 23 \cdot 47^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$138$ |
$2$ |
$0$ |
$58.49380365$ |
$1$ |
|
$0$ |
$5955840$ |
$2.492653$ |
$9048064/621$ |
$0.80984$ |
$4.56827$ |
$[0, -1, 1, -1626560, 750160589]$ |
\(y^2+y=x^3-x^2-1626560x+750160589\) |
138.2.0.? |
$[(26680974687019382503295517/174044804062, 1130402028079496086356858642870502429/174044804062)]$ |
$1$ |