Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (22 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
152421.a1 152421.a \( 3 \cdot 23 \cdot 47^{2} \) $2$ $\mathsf{trivial}$ $0.411922925$ $[0, 1, 1, -642, -5128]$ \(y^2+y=x^3+x^2-642x-5128\) 138.2.0.? $[(33, 103), (-13, 34)]$
152421.b1 152421.b \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\mathsf{trivial}$ $7.070180345$ $[0, 1, 1, -1418914, 509679604]$ \(y^2+y=x^3+x^2-1418914x+509679604\) 138.2.0.? $[(3749/2, 15989/2)]$
152421.c1 152421.c \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\Z/4\Z$ $7.999286176$ $[1, 1, 1, -403688169, 3121718519400]$ \(y^2+xy+y=x^3+x^2-403688169x+3121718519400\) 2.3.0.a.1, 4.12.0-4.c.1.1, 184.24.0.?, 188.24.0.?, 8648.48.0.? $[(-19041, 1985703)]$
152421.c2 152421.c \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\Z/2\Z$ $31.99714470$ $[1, 1, 1, -37192979, -2067205984]$ \(y^2+xy+y=x^3+x^2-37192979x-2067205984\) 2.3.0.a.1, 4.12.0-4.c.1.2, 184.24.0.?, 376.24.0.?, 2162.6.0.?, $\ldots$ $[(-48779132316911/98112, 226503338558777005657/98112)]$
152421.c3 152421.c \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $15.99857235$ $[1, 1, 1, -25253334, 48676285266]$ \(y^2+xy+y=x^3+x^2-25253334x+48676285266\) 2.6.0.a.1, 4.12.0-2.a.1.1, 92.24.0.?, 188.24.0.?, 4324.48.0.? $[(-25372213/73, 97014514050/73)]$
152421.c4 152421.c \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\Z/2\Z$ $7.999286176$ $[1, 1, 1, -854929, 1460491910]$ \(y^2+xy+y=x^3+x^2-854929x+1460491910\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 46.6.0.a.1, 92.12.0.?, $\ldots$ $[(408824/19, 298711503/19)]$
152421.d1 152421.d \( 3 \cdot 23 \cdot 47^{2} \) $2$ $\Z/2\Z$ $2.335811913$ $[1, 0, 0, -1738, 12989]$ \(y^2+xy=x^3-1738x+12989\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 184.12.0.?, 188.12.0.?, $\ldots$ $[(-4, 143), (-44, 91)]$
152421.d2 152421.d \( 3 \cdot 23 \cdot 47^{2} \) $2$ $\Z/2\Z$ $2.335811913$ $[1, 0, 0, 377, 1568]$ \(y^2+xy=x^3+377x+1568\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 92.12.0.?, 94.6.0.?, $\ldots$ $[(-1, 35), (71, 587)]$
152421.e1 152421.e \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\Z/2\Z$ $15.28826786$ $[1, 0, 0, -3839288, -1363914039]$ \(y^2+xy=x^3-3839288x-1363914039\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bt.1, 184.12.0.?, 188.12.0.?, $\ldots$ $[(6185848/37, 13622499523/37)]$
152421.e2 152421.e \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\Z/2\Z$ $7.644133932$ $[1, 0, 0, 832747, -159463416]$ \(y^2+xy=x^3+832747x-159463416\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bq.1, 92.12.0.?, 94.6.0.?, $\ldots$ $[(4291, 284956)]$
152421.f1 152421.f \( 3 \cdot 23 \cdot 47^{2} \) $2$ $\mathsf{trivial}$ $1.609854814$ $[0, -1, 1, -31, 75]$ \(y^2+y=x^3-x^2-31x+75\) 138.2.0.? $[(3, 0), (5, 4)]$
152421.g1 152421.g \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 157, 827]$ \(y^2+y=x^3-x^2+157x+827\) 6486.2.0.? $[ ]$
152421.h1 152421.h \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\mathsf{trivial}$ $23.44060738$ $[0, -1, 1, 346077, -91428649]$ \(y^2+y=x^3-x^2+346077x-91428649\) 6486.2.0.? $[(4512122339639/34085, 9685231032580283512/34085)]$
152421.i1 152421.i \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\mathsf{trivial}$ $12.77779544$ $[0, -1, 1, -69215, -6709081]$ \(y^2+y=x^3-x^2-69215x-6709081\) 138.2.0.? $[(353661/2, 210317963/2)]$
152421.j1 152421.j \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -493343, -133541434]$ \(y^2+y=x^3+x^2-493343x-133541434\) 3.4.0.a.1, 138.8.0.?, 141.8.0.?, 6486.16.0.? $[ ]$
152421.j2 152421.j \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -161993, -308580385]$ \(y^2+y=x^3+x^2-161993x-308580385\) 3.4.0.a.1, 138.8.0.?, 141.8.0.?, 6486.16.0.? $[ ]$
152421.k1 152421.k \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -367844, 81003993]$ \(y^2+xy=x^3+x^2-367844x+81003993\) 2.3.0.a.1, 12.6.0.a.1, 4324.6.0.?, 12972.12.0.? $[ ]$
152421.k2 152421.k \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -69629, -5538000]$ \(y^2+xy=x^3+x^2-69629x-5538000\) 2.3.0.a.1, 12.6.0.b.1, 2162.6.0.?, 12972.12.0.? $[ ]$
152421.l1 152421.l \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -34286, 2432537]$ \(y^2+xy+y=x^3-34286x+2432537\) 2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? $[ ]$
152421.l2 152421.l \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1151, 73325]$ \(y^2+xy+y=x^3-1151x+73325\) 2.3.0.a.1, 12.6.0.b.1, 46.6.0.a.1, 276.12.0.? $[ ]$
152421.m1 152421.m \( 3 \cdot 23 \cdot 47^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -736, -6975]$ \(y^2+y=x^3-x^2-736x-6975\) 138.2.0.? $[ ]$
152421.n1 152421.n \( 3 \cdot 23 \cdot 47^{2} \) $1$ $\mathsf{trivial}$ $58.49380365$ $[0, -1, 1, -1626560, 750160589]$ \(y^2+y=x^3-x^2-1626560x+750160589\) 138.2.0.? $[(26680974687019382503295517/174044804062, 1130402028079496086356858642870502429/174044804062)]$
  displayed columns for results