Learn more

Refine search


Results (23 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
15075.a1 15075.a \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $0.797314291$ $[0, 0, 1, 375, -2844]$ \(y^2+y=x^3+375x-2844\) 134.2.0.? $[(20, 112)]$
15075.b1 15075.b \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $0.737649543$ $[1, -1, 1, -80, -78]$ \(y^2+xy+y=x^3-x^2-80x-78\) 2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? $[(-6, 15)]$
15075.b2 15075.b \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $1.475299086$ $[1, -1, 1, 295, -828]$ \(y^2+xy+y=x^3-x^2+295x-828\) 2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? $[(9, 45)]$
15075.c1 15075.c \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $1.196219425$ $[1, -1, 1, -16430, 786822]$ \(y^2+xy+y=x^3-x^2-16430x+786822\) 2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? $[(113, 546)]$
15075.c2 15075.c \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $2.392438850$ $[1, -1, 1, 445, 44322]$ \(y^2+xy+y=x^3-x^2+445x+44322\) 2.3.0.a.1, 60.6.0.b.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? $[(5, 213)]$
15075.d1 15075.d \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, -230, -6978]$ \(y^2+xy+y=x^3-x^2-230x-6978\) 804.2.0.? $[ ]$
15075.e1 15075.e \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $0.513768041$ $[0, 0, 1, 150, -369]$ \(y^2+y=x^3+150x-369\) 134.2.0.? $[(5, 22)]$
15075.f1 15075.f \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -120, -509]$ \(y^2+y=x^3-120x-509\) 3.4.0.a.1, 15.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 2010.16.0.? $[ ]$
15075.f2 15075.f \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 330, -2714]$ \(y^2+y=x^3+330x-2714\) 3.4.0.a.1, 15.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 2010.16.0.? $[ ]$
15075.g1 15075.g \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -675300, 235923781]$ \(y^2+y=x^3-675300x+235923781\) 3.4.0.a.1, 15.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 2010.16.0.? $[ ]$
15075.g2 15075.g \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 53700, -727844]$ \(y^2+y=x^3+53700x-727844\) 3.4.0.a.1, 15.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 2010.16.0.? $[ ]$
15075.h1 15075.h \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $5.139164932$ $[0, 0, 1, 3750, -46094]$ \(y^2+y=x^3+3750x-46094\) 134.2.0.? $[(361/2, 8105/2)]$
15075.i1 15075.i \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -3000, -63594]$ \(y^2+y=x^3-3000x-63594\) 3.8.0-3.a.1.1, 134.2.0.?, 402.16.0.? $[ ]$
15075.i2 15075.i \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\Z/3\Z$ $1$ $[0, 0, 1, 8250, -339219]$ \(y^2+y=x^3+8250x-339219\) 3.8.0-3.a.1.2, 134.2.0.?, 402.16.0.? $[ ]$
15075.j1 15075.j \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -450, -7594]$ \(y^2+y=x^3-450x-7594\) 134.2.0.? $[ ]$
15075.k1 15075.k \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $1.972112565$ $[1, -1, 0, -717, 2816]$ \(y^2+xy=x^3-x^2-717x+2816\) 2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? $[(-16, 108)]$
15075.k2 15075.k \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $3.944225131$ $[1, -1, 0, 2658, 19691]$ \(y^2+xy=x^3-x^2+2658x+19691\) 2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? $[(71/2, 2079/2)]$
15075.l1 15075.l \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $3.050602406$ $[1, -1, 0, -66942, 6159591]$ \(y^2+xy=x^3-x^2-66942x+6159591\) 2.3.0.a.1, 20.6.0.b.1, 402.6.0.?, 4020.12.0.? $[(1191/2, 27159/2)]$
15075.l2 15075.l \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\Z/2\Z$ $6.101204813$ $[1, -1, 0, 73683, 28518966]$ \(y^2+xy=x^3-x^2+73683x+28518966\) 2.3.0.a.1, 20.6.0.a.1, 804.6.0.?, 4020.12.0.? $[(6213/4, 675597/4)]$
15075.m1 15075.m \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -657, 6426]$ \(y^2+xy=x^3-x^2-657x+6426\) 2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? $[ ]$
15075.m2 15075.m \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, 18, 351]$ \(y^2+xy=x^3-x^2+18x+351\) 2.3.0.a.1, 60.6.0.b.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? $[ ]$
15075.n1 15075.n \( 3^{2} \cdot 5^{2} \cdot 67 \) $1$ $\mathsf{trivial}$ $26.11485481$ $[1, -1, 0, -178767, -29047734]$ \(y^2+xy=x^3-x^2-178767x-29047734\) 804.2.0.? $[(531810542442/22807, 341047594232219262/22807)]$
15075.o1 15075.o \( 3^{2} \cdot 5^{2} \cdot 67 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2775, 56281]$ \(y^2+y=x^3-2775x+56281\) 134.2.0.? $[ ]$
  displayed columns for results