Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
15075.a1 |
15075k1 |
15075.a |
15075k |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{8} \cdot 5^{6} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$0.797314291$ |
$1$ |
|
$4$ |
$13824$ |
$0.573792$ |
$512000/603$ |
$0.80036$ |
$3.05889$ |
$[0, 0, 1, 375, -2844]$ |
\(y^2+y=x^3+375x-2844\) |
134.2.0.? |
$[(20, 112)]$ |
15075.b1 |
15075b1 |
15075.b |
15075b |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 3^{3} \cdot 5^{6} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$0.737649543$ |
$1$ |
|
$9$ |
$3584$ |
$0.122347$ |
$132651/67$ |
$0.90998$ |
$2.57234$ |
$[1, -1, 1, -80, -78]$ |
\(y^2+xy+y=x^3-x^2-80x-78\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(-6, 15)]$ |
15075.b2 |
15075b2 |
15075.b |
15075b |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{3} \cdot 5^{6} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1.475299086$ |
$1$ |
|
$4$ |
$7168$ |
$0.468920$ |
$6751269/4489$ |
$0.95178$ |
$2.98080$ |
$[1, -1, 1, 295, -828]$ |
\(y^2+xy+y=x^3-x^2+295x-828\) |
2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? |
$[(9, 45)]$ |
15075.c1 |
15075m2 |
15075.c |
15075m |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 3^{7} \cdot 5^{9} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1.196219425$ |
$1$ |
|
$4$ |
$42240$ |
$1.315926$ |
$344472101/13467$ |
$0.91269$ |
$4.23397$ |
$[1, -1, 1, -16430, 786822]$ |
\(y^2+xy+y=x^3-x^2-16430x+786822\) |
2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[(113, 546)]$ |
15075.c2 |
15075m1 |
15075.c |
15075m |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{8} \cdot 5^{9} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$2.392438850$ |
$1$ |
|
$3$ |
$21120$ |
$0.969352$ |
$6859/603$ |
$0.92002$ |
$3.63033$ |
$[1, -1, 1, 445, 44322]$ |
\(y^2+xy+y=x^3-x^2+445x+44322\) |
2.3.0.a.1, 60.6.0.b.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? |
$[(5, 213)]$ |
15075.d1 |
15075f1 |
15075.d |
15075f |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{9} \cdot 5^{6} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$804$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$13440$ |
$0.660432$ |
$-117649/1809$ |
$0.97109$ |
$3.24719$ |
$[1, -1, 1, -230, -6978]$ |
\(y^2+xy+y=x^3-x^2-230x-6978\) |
804.2.0.? |
$[ ]$ |
15075.e1 |
15075l1 |
15075.e |
15075l |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{8} \cdot 5^{4} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$0.513768041$ |
$1$ |
|
$4$ |
$4224$ |
$0.307556$ |
$819200/603$ |
$0.83004$ |
$2.76958$ |
$[0, 0, 1, 150, -369]$ |
\(y^2+y=x^3+150x-369\) |
134.2.0.? |
$[(5, 22)]$ |
15075.f1 |
15075d1 |
15075.f |
15075d |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2010$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2016$ |
$0.005100$ |
$-10485760/67$ |
$0.88269$ |
$2.70113$ |
$[0, 0, 1, -120, -509]$ |
\(y^2+y=x^3-120x-509\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 2010.16.0.? |
$[ ]$ |
15075.f2 |
15075d2 |
15075.f |
15075d |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{2} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2010$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6048$ |
$0.554406$ |
$218071040/300763$ |
$0.89954$ |
$3.04916$ |
$[0, 0, 1, 330, -2714]$ |
\(y^2+y=x^3+330x-2714\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 2010.16.0.? |
$[ ]$ |
15075.g1 |
15075e2 |
15075.g |
15075e |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{10} \cdot 5^{12} \cdot 67^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2010$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$276480$ |
$2.309925$ |
$-2989967081734144/380653171875$ |
$1.01643$ |
$5.41340$ |
$[0, 0, 1, -675300, 235923781]$ |
\(y^2+y=x^3-675300x+235923781\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 134.2.0.?, 402.8.0.?, 2010.16.0.? |
$[ ]$ |
15075.g2 |
15075e1 |
15075.g |
15075e |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{18} \cdot 5^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$2010$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$92160$ |
$1.760616$ |
$1503484706816/890163675$ |
$1.04611$ |
$4.60327$ |
$[0, 0, 1, 53700, -727844]$ |
\(y^2+y=x^3+53700x-727844\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 134.2.0.?, 402.8.0.?, 2010.16.0.? |
$[ ]$ |
15075.h1 |
15075h1 |
15075.h |
15075h |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{8} \cdot 5^{10} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$5.139164932$ |
$1$ |
|
$0$ |
$21120$ |
$1.112276$ |
$819200/603$ |
$0.83004$ |
$3.77330$ |
$[0, 0, 1, 3750, -46094]$ |
\(y^2+y=x^3+3750x-46094\) |
134.2.0.? |
$[(361/2, 8105/2)]$ |
15075.i1 |
15075n1 |
15075.i |
15075n |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.2 |
3B.1.2 |
$402$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10080$ |
$0.809818$ |
$-10485760/67$ |
$0.88269$ |
$3.70486$ |
$[0, 0, 1, -3000, -63594]$ |
\(y^2+y=x^3-3000x-63594\) |
3.8.0-3.a.1.1, 134.2.0.?, 402.16.0.? |
$[ ]$ |
15075.i2 |
15075n2 |
15075.i |
15075n |
$2$ |
$3$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 67^{3} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.8.0.1 |
3B.1.1 |
$402$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$30240$ |
$1.359125$ |
$218071040/300763$ |
$0.89954$ |
$4.05288$ |
$[0, 0, 1, 8250, -339219]$ |
\(y^2+y=x^3+8250x-339219\) |
3.8.0-3.a.1.2, 134.2.0.?, 402.16.0.? |
$[ ]$ |
15075.j1 |
15075c1 |
15075.j |
15075c |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{8} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6144$ |
$0.662465$ |
$-884736/1675$ |
$1.01110$ |
$3.26307$ |
$[0, 0, 1, -450, -7594]$ |
\(y^2+y=x^3-450x-7594\) |
134.2.0.? |
$[ ]$ |
15075.k1 |
15075a1 |
15075.k |
15075a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 3^{9} \cdot 5^{6} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$1.972112565$ |
$1$ |
|
$3$ |
$10752$ |
$0.671653$ |
$132651/67$ |
$0.90998$ |
$3.25749$ |
$[1, -1, 0, -717, 2816]$ |
\(y^2+xy=x^3-x^2-717x+2816\) |
2.3.0.a.1, 12.6.0.c.1, 268.6.0.?, 402.6.0.?, 804.12.0.? |
$[(-16, 108)]$ |
15075.k2 |
15075a2 |
15075.k |
15075a |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{9} \cdot 5^{6} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$804$ |
$12$ |
$0$ |
$3.944225131$ |
$1$ |
|
$0$ |
$21504$ |
$1.018227$ |
$6751269/4489$ |
$0.95178$ |
$3.66595$ |
$[1, -1, 0, 2658, 19691]$ |
\(y^2+xy=x^3-x^2+2658x+19691\) |
2.3.0.a.1, 6.6.0.a.1, 268.6.0.?, 804.12.0.? |
$[(71/2, 2079/2)]$ |
15075.l1 |
15075i1 |
15075.l |
15075i |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 3^{11} \cdot 5^{12} \cdot 67 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$3.050602406$ |
$1$ |
|
$1$ |
$69120$ |
$1.707445$ |
$2912566550041/254390625$ |
$0.91283$ |
$4.67200$ |
$[1, -1, 0, -66942, 6159591]$ |
\(y^2+xy=x^3-x^2-66942x+6159591\) |
2.3.0.a.1, 20.6.0.b.1, 402.6.0.?, 4020.12.0.? |
$[(1191/2, 27159/2)]$ |
15075.l2 |
15075i2 |
15075.l |
15075i |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{16} \cdot 5^{9} \cdot 67^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$6.101204813$ |
$1$ |
|
$0$ |
$138240$ |
$2.054020$ |
$3883959939959/33133870125$ |
$0.95785$ |
$4.97429$ |
$[1, -1, 0, 73683, 28518966]$ |
\(y^2+xy=x^3-x^2+73683x+28518966\) |
2.3.0.a.1, 20.6.0.a.1, 804.6.0.?, 4020.12.0.? |
$[(6213/4, 675597/4)]$ |
15075.m1 |
15075o2 |
15075.m |
15075o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( 3^{7} \cdot 5^{3} \cdot 67^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8448$ |
$0.511207$ |
$344472101/13467$ |
$0.91269$ |
$3.23024$ |
$[1, -1, 0, -657, 6426]$ |
\(y^2+xy=x^3-x^2-657x+6426\) |
2.3.0.a.1, 60.6.0.a.1, 804.6.0.?, 1340.6.0.?, 4020.12.0.? |
$[ ]$ |
15075.m2 |
15075o1 |
15075.m |
15075o |
$2$ |
$2$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{8} \cdot 5^{3} \cdot 67 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$4020$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4224$ |
$0.164633$ |
$6859/603$ |
$0.92002$ |
$2.62660$ |
$[1, -1, 0, 18, 351]$ |
\(y^2+xy=x^3-x^2+18x+351\) |
2.3.0.a.1, 60.6.0.b.1, 670.6.0.?, 804.6.0.?, 4020.12.0.? |
$[ ]$ |
15075.n1 |
15075j1 |
15075.n |
15075j |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{11} \cdot 5^{6} \cdot 67 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$804$ |
$2$ |
$0$ |
$26.11485481$ |
$1$ |
|
$0$ |
$51840$ |
$1.527960$ |
$-55467626237353/16281$ |
$1.06184$ |
$4.97829$ |
$[1, -1, 0, -178767, -29047734]$ |
\(y^2+xy=x^3-x^2-178767x-29047734\) |
804.2.0.? |
$[(531810542442/22807, 341047594232219262/22807)]$ |
15075.o1 |
15075g1 |
15075.o |
15075g |
$1$ |
$1$ |
\( 3^{2} \cdot 5^{2} \cdot 67 \) |
\( - 3^{6} \cdot 5^{6} \cdot 67 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$134$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15360$ |
$0.678759$ |
$-207474688/67$ |
$0.87656$ |
$3.67947$ |
$[0, 0, 1, -2775, 56281]$ |
\(y^2+y=x^3-2775x+56281\) |
134.2.0.? |
$[ ]$ |