Learn more

Refine search


Results (1-50 of 91 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
143650.a1 143650.a \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $5.294233837$ $[1, -1, 0, -43042, -3430634]$ \(y^2+xy=x^3-x^2-43042x-3430634\) 680.2.0.? $[(1011/2, 9689/2)]$
143650.b1 143650.b \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -86701, 24291048]$ \(y^2+xy+y=x^3-86701x+24291048\) 3.4.0.a.1, 39.8.0-3.a.1.1, 408.8.0.?, 1768.2.0.?, 5304.16.0.? $[ ]$
143650.b2 143650.b \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 758299, -558758952]$ \(y^2+xy+y=x^3+758299x-558758952\) 3.4.0.a.1, 39.8.0-3.a.1.2, 408.8.0.?, 1768.2.0.?, 5304.16.0.? $[ ]$
143650.c1 143650.c \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -150019276, -707255437302]$ \(y^2+xy+y=x^3-150019276x-707255437302\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? $[ ]$
143650.c2 143650.c \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -9411276, -10964621302]$ \(y^2+xy+y=x^3-9411276x-10964621302\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? $[ ]$
143650.d1 143650.d \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1662626, 817391148]$ \(y^2+xy+y=x^3-1662626x+817391148\) 680.2.0.? $[ ]$
143650.e1 143650.e \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.966778799$ $[1, 0, 1, -230351, -41035902]$ \(y^2+xy+y=x^3-230351x-41035902\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 520.12.0.?, $\ldots$ $[(-258, 1241)]$
143650.e2 143650.e \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.983389399$ $[1, 0, 1, 107649, -151223902]$ \(y^2+xy+y=x^3+107649x-151223902\) 2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 520.12.0.?, 680.24.0.?, $\ldots$ $[(547, 8176)]$
143650.f1 143650.f \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -1899226, 1043589198]$ \(y^2+xy+y=x^3-1899226x+1043589198\) 1768.2.0.? $[ ]$
143650.g1 143650.g \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $6.581529181$ $[1, 1, 0, 229330, -6768380]$ \(y^2+xy=x^3+x^2+229330x-6768380\) 68.2.0.a.1 $[(1176, 42898)]$
143650.h1 143650.h \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.497131860$ $[1, 1, 0, -179650, 30077000]$ \(y^2+xy=x^3+x^2-179650x+30077000\) 68.2.0.a.1 $[(70, 4190)]$
143650.i1 143650.i \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3045, 83725]$ \(y^2+xy=x^3+x^2-3045x+83725\) 680.2.0.? $[ ]$
143650.j1 143650.j \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -10650, 1769500]$ \(y^2+xy=x^3+x^2-10650x+1769500\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[ ]$
143650.j2 143650.j \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 94975, -45444875]$ \(y^2+xy=x^3+x^2+94975x-45444875\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[ ]$
143650.k1 143650.k \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 40050, -28143500]$ \(y^2+xy=x^3+x^2+40050x-28143500\) 68.2.0.a.1 $[ ]$
143650.l1 143650.l \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $6.602867926$ $[1, -1, 0, -17297942, 22475918466]$ \(y^2+xy=x^3-x^2-17297942x+22475918466\) 680.2.0.? $[(3209, 483)]$
143650.m1 143650.m \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $2$ $\mathsf{trivial}$ $4.986375998$ $[1, -1, 0, -1442, 13716]$ \(y^2+xy=x^3-x^2-1442x+13716\) 680.2.0.? $[(9, 33), (59, 333)]$
143650.n1 143650.n \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -3646302542, -83994324883884]$ \(y^2+xy=x^3-x^2-3646302542x-83994324883884\) 7.8.0.a.1, 35.16.0-7.a.1.2, 91.24.0.?, 455.48.0.?, 680.2.0.?, $\ldots$ $[ ]$
143650.n2 143650.n \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -326086292, 2266535548616]$ \(y^2+xy=x^3-x^2-326086292x+2266535548616\) 7.8.0.a.1, 35.16.0-7.a.1.1, 91.24.0.?, 455.48.0.?, 680.2.0.?, $\ldots$ $[ ]$
143650.o1 143650.o \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 94974, -1211052]$ \(y^2+xy+y=x^3+94974x-1211052\) 68.2.0.a.1 $[ ]$
143650.p1 143650.p \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 9, -102]$ \(y^2+xy+y=x^3+9x-102\) 68.2.0.a.1 $[ ]$
143650.q1 143650.q \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.010674289$ $[1, 1, 0, -31775, 1875125]$ \(y^2+xy=x^3+x^2-31775x+1875125\) 2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 340.24.0.?, $\ldots$ $[(-155, 1840)]$
143650.q2 143650.q \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.005337144$ $[1, 1, 0, 52725, 10240625]$ \(y^2+xy=x^3+x^2+52725x+10240625\) 2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 260.12.0.?, 680.24.0.?, $\ldots$ $[(356, 8441)]$
143650.r1 143650.r \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -585250, 171952500]$ \(y^2+xy=x^3+x^2-585250x+171952500\) 680.2.0.? $[ ]$
143650.s1 143650.s \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -18579525, -30816626875]$ \(y^2+xy=x^3+x^2-18579525x-30816626875\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[ ]$
143650.s2 143650.s \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -728900, 189908750]$ \(y^2+xy=x^3+x^2-728900x+189908750\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[ ]$
143650.t1 143650.t \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 534375, -44895625]$ \(y^2+xy=x^3+x^2+534375x-44895625\) 40.2.0.a.1 $[ ]$
143650.u1 143650.u \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $21.08668784$ $[1, 1, 0, -17612000, -5603200000]$ \(y^2+xy=x^3+x^2-17612000x-5603200000\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[(-5144414705/1138, 63593992172395/1138)]$
143650.u2 143650.u \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.028895947$ $[1, 1, 0, -10788625, 13634767125]$ \(y^2+xy=x^3+x^2-10788625x+13634767125\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ $[(-3735, 44805)]$
143650.u3 143650.u \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.514447973$ $[1, 1, 0, -10450625, 14529453125]$ \(y^2+xy=x^3+x^2-10450625x+14529453125\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(16750/3, 1031125/3)]$
143650.u4 143650.u \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $10.54334392$ $[1, 1, 0, 68916000, -44281216000]$ \(y^2+xy=x^3+x^2+68916000x-44281216000\) 2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ $[(9315776/35, 40953878944/35)]$
143650.v1 143650.v \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -406857025, -3151551529875]$ \(y^2+xy=x^3+x^2-406857025x-3151551529875\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 68.6.0.c.1, 104.6.0.?, $\ldots$ $[ ]$
143650.v2 143650.v \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -35564025, -6328526875]$ \(y^2+xy=x^3+x^2-35564025x-6328526875\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 34.6.0.a.1, 102.24.0.?, $\ldots$ $[ ]$
143650.v3 143650.v \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -23966400, 41452610750]$ \(y^2+xy=x^3+x^2-23966400x+41452610750\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 68.6.0.c.1, 104.6.0.?, $\ldots$ $[ ]$
143650.v4 143650.v \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -23417150, 43606220000]$ \(y^2+xy=x^3+x^2-23417150x+43606220000\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 34.6.0.a.1, 102.24.0.?, $\ldots$ $[ ]$
143650.w1 143650.w \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.491529817$ $[1, 1, 0, -13250, -118750]$ \(y^2+xy=x^3+x^2-13250x-118750\) 2.3.0.a.1, 40.6.0.f.1, 104.6.0.?, 260.6.0.?, 520.12.0.? $[(1075, 34525)]$
143650.w2 143650.w \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.983059634$ $[1, 1, 0, -10000, -388500]$ \(y^2+xy=x^3+x^2-10000x-388500\) 2.3.0.a.1, 40.6.0.f.1, 104.6.0.?, 130.6.0.?, 520.12.0.? $[(2485/3, 110810/3)]$
143650.x1 143650.x \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $11.65496312$ $[1, 1, 0, -385375, -42922875]$ \(y^2+xy=x^3+x^2-385375x-42922875\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[(-22629/14, 759219/14)]$
143650.x2 143650.x \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $3.884987709$ $[1, 1, 0, -192000, 32300000]$ \(y^2+xy=x^3+x^2-192000x+32300000\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[(251, -124)]$
143650.y1 143650.y \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $18.04774869$ $[1, -1, 0, 33008, 4926416]$ \(y^2+xy=x^3-x^2+33008x+4926416\) 68.2.0.a.1 $[(-21525008/717, 694310836244/717)]$
143650.z1 143650.z \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, -106417, -13338259]$ \(y^2+xy=x^3-x^2-106417x-13338259\) 68.2.0.a.1 $[ ]$
143650.ba1 143650.ba \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 1320, 39147]$ \(y^2+xy+y=x^3-x^2+1320x+39147\) 68.2.0.a.1 $[ ]$
143650.bb1 143650.bb \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.595568819$ $[1, 0, 0, -7924034063, 271273520330617]$ \(y^2+xy=x^3-7924034063x+271273520330617\) 2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? $[(64806, 5437789)]$
143650.bb2 143650.bb \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.797784409$ $[1, 0, 0, -612418063, 2081754058617]$ \(y^2+xy=x^3-612418063x+2081754058617\) 2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? $[(-5498, 2301149)]$
143650.bc1 143650.bc \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.627720194$ $[1, 0, 0, -9838, 371292]$ \(y^2+xy=x^3-9838x+371292\) 680.2.0.? $[(62, -6)]$
143650.bd1 143650.bd \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $9.482322554$ $[1, 0, 0, -587363, -173309033]$ \(y^2+xy=x^3-587363x-173309033\) 2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? $[(-86817/14, 443255/14)]$
143650.bd2 143650.bd \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.741161277$ $[1, 0, 0, -38113, -2492283]$ \(y^2+xy=x^3-38113x-2492283\) 2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? $[(-337/2, 3137/2)]$
143650.be1 143650.be \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.768971116$ $[1, 1, 1, 237, -12719]$ \(y^2+xy+y=x^3+x^2+237x-12719\) 68.2.0.a.1 $[(35, 182)]$
143650.bf1 143650.bf \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $3.693688718$ $[1, 1, 1, -28058313, -59061992969]$ \(y^2+xy+y=x^3+x^2-28058313x-59061992969\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[(21575, 3051712)]$
143650.bf2 143650.bf \( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.231229572$ $[1, 1, 1, 1685687, -260808969]$ \(y^2+xy+y=x^3+x^2+1685687x-260808969\) 3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ $[(1295, 63352)]$
Next   displayed columns for results