Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
143650.a1 |
143650be1 |
143650.a |
143650be |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 5^{7} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$5.294233837$ |
$1$ |
|
$0$ |
$1077120$ |
$1.417227$ |
$-116930169/170$ |
$0.88233$ |
$3.67372$ |
$[1, -1, 0, -43042, -3430634]$ |
\(y^2+xy=x^3-x^2-43042x-3430634\) |
680.2.0.? |
$[(1011/2, 9689/2)]$ |
143650.b1 |
143650bf1 |
143650.b |
143650bf |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{9} \cdot 5^{8} \cdot 13^{7} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5304$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1814400$ |
$2.012020$ |
$-38226865/113152$ |
$0.81247$ |
$4.00290$ |
$[1, 0, 1, -86701, 24291048]$ |
\(y^2+xy+y=x^3-86701x+24291048\) |
3.4.0.a.1, 39.8.0-3.a.1.1, 408.8.0.?, 1768.2.0.?, 5304.16.0.? |
$[ ]$ |
143650.b2 |
143650bf2 |
143650.b |
143650bf |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{3} \cdot 5^{8} \cdot 13^{9} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$5304$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5443200$ |
$2.561329$ |
$25575600335/86350888$ |
$0.88654$ |
$4.53097$ |
$[1, 0, 1, 758299, -558758952]$ |
\(y^2+xy+y=x^3+758299x-558758952\) |
3.4.0.a.1, 39.8.0-3.a.1.2, 408.8.0.?, 1768.2.0.?, 5304.16.0.? |
$[ ]$ |
143650.c1 |
143650bh2 |
143650.c |
143650bh |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{9} \cdot 5^{10} \cdot 13^{7} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18579456$ |
$3.206768$ |
$4950906946375997881/1202240000$ |
$0.96362$ |
$5.73403$ |
$[1, 0, 1, -150019276, -707255437302]$ |
\(y^2+xy+y=x^3-150019276x-707255437302\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[ ]$ |
143650.c2 |
143650bh1 |
143650.c |
143650bh |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{18} \cdot 5^{8} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$9289728$ |
$2.860195$ |
$1222331589867961/18828492800$ |
$0.92061$ |
$5.03454$ |
$[1, 0, 1, -9411276, -10964621302]$ |
\(y^2+xy+y=x^3-9411276x-10964621302\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[ ]$ |
143650.d1 |
143650bi1 |
143650.d |
143650bi |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{3} \cdot 5^{11} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3594240$ |
$2.410580$ |
$39878626801/425000$ |
$0.86324$ |
$4.59661$ |
$[1, 0, 1, -1662626, 817391148]$ |
\(y^2+xy+y=x^3-1662626x+817391148\) |
680.2.0.? |
$[ ]$ |
143650.e1 |
143650bj1 |
143650.e |
143650bj |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 5^{6} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$3.966778799$ |
$1$ |
|
$5$ |
$1376256$ |
$1.978407$ |
$17923019113/735488$ |
$0.88004$ |
$4.09727$ |
$[1, 0, 1, -230351, -41035902]$ |
\(y^2+xy+y=x^3-230351x-41035902\) |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 520.12.0.?, $\ldots$ |
$[(-258, 1241)]$ |
143650.e2 |
143650bj2 |
143650.e |
143650bj |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{6} \cdot 13^{10} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$1.983389399$ |
$1$ |
|
$6$ |
$2752512$ |
$2.324982$ |
$1829276567/132066064$ |
$0.95549$ |
$4.31084$ |
$[1, 0, 1, 107649, -151223902]$ |
\(y^2+xy+y=x^3+107649x-151223902\) |
2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 520.12.0.?, 680.24.0.?, $\ldots$ |
$[(547, 8176)]$ |
143650.f1 |
143650bg1 |
143650.f |
143650bg |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 5^{4} \cdot 13^{7} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1768$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5814144$ |
$2.509453$ |
$-251138440675825/10668805498$ |
$0.93883$ |
$4.63618$ |
$[1, 0, 1, -1899226, 1043589198]$ |
\(y^2+xy+y=x^3-1899226x+1043589198\) |
1768.2.0.? |
$[ ]$ |
143650.g1 |
143650bm1 |
143650.g |
143650bm |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{2} \cdot 13^{6} \cdot 17^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$6.581529181$ |
$1$ |
|
$2$ |
$3015936$ |
$2.123802$ |
$11053587253415/6565418768$ |
$1.03983$ |
$4.09615$ |
$[1, 1, 0, 229330, -6768380]$ |
\(y^2+xy=x^3+x^2+229330x-6768380\) |
68.2.0.a.1 |
$[(1176, 42898)]$ |
143650.h1 |
143650bn1 |
143650.h |
143650bn |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{2} \cdot 5^{8} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$0.497131860$ |
$1$ |
|
$6$ |
$1198080$ |
$1.908501$ |
$-50308609/1700$ |
$0.78197$ |
$4.03925$ |
$[1, 1, 0, -179650, 30077000]$ |
\(y^2+xy=x^3+x^2-179650x+30077000\) |
68.2.0.a.1 |
$[(70, 4190)]$ |
143650.i1 |
143650bk1 |
143650.i |
143650bk |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{7} \cdot 5^{3} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$251328$ |
$1.033184$ |
$-5177717/2176$ |
$0.86118$ |
$3.05039$ |
$[1, 1, 0, -3045, 83725]$ |
\(y^2+xy=x^3+x^2-3045x+83725\) |
680.2.0.? |
$[ ]$ |
143650.j1 |
143650bo1 |
143650.j |
143650bo |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{3} \cdot 5^{9} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$590976$ |
$1.581293$ |
$-1771561/17000$ |
$0.99970$ |
$3.56211$ |
$[1, 1, 0, -10650, 1769500]$ |
\(y^2+xy=x^3+x^2-10650x+1769500\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[ ]$ |
143650.j2 |
143650bo2 |
143650.j |
143650bo |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{9} \cdot 5^{7} \cdot 13^{6} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1772928$ |
$2.130600$ |
$1256216039/12577280$ |
$0.94869$ |
$4.10849$ |
$[1, 1, 0, 94975, -45444875]$ |
\(y^2+xy=x^3+x^2+94975x-45444875\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[ ]$ |
143650.k1 |
143650bl1 |
143650.k |
143650bl |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{6} \cdot 5^{8} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1797120$ |
$2.045338$ |
$22295/1088$ |
$0.80427$ |
$4.02774$ |
$[1, 1, 0, 40050, -28143500]$ |
\(y^2+xy=x^3+x^2+40050x-28143500\) |
68.2.0.a.1 |
$[ ]$ |
143650.l1 |
143650bp1 |
143650.l |
143650bp |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 5^{11} \cdot 13^{8} \cdot 17^{5} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$6.602867926$ |
$1$ |
|
$2$ |
$11980800$ |
$3.140003$ |
$44909703885969/8874106250$ |
$0.95268$ |
$5.18831$ |
$[1, -1, 0, -17297942, 22475918466]$ |
\(y^2+xy=x^3-x^2-17297942x+22475918466\) |
680.2.0.? |
$[(3209, 483)]$ |
143650.m1 |
143650bq1 |
143650.m |
143650bq |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{9} \cdot 5^{7} \cdot 13^{2} \cdot 17 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$4.986375998$ |
$1$ |
|
$6$ |
$165888$ |
$0.823966$ |
$125626761/43520$ |
$0.82391$ |
$2.81558$ |
$[1, -1, 0, -1442, 13716]$ |
\(y^2+xy=x^3-x^2-1442x+13716\) |
680.2.0.? |
$[(9, 33), (59, 333)]$ |
143650.n1 |
143650br2 |
143650.n |
143650br |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{21} \cdot 5^{7} \cdot 13^{8} \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$61880$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$123282432$ |
$4.332069$ |
$420644261295449288721/4302712843796480$ |
$1.08984$ |
$6.54010$ |
$[1, -1, 0, -3646302542, -83994324883884]$ |
\(y^2+xy=x^3-x^2-3646302542x-83994324883884\) |
7.8.0.a.1, 35.16.0-7.a.1.2, 91.24.0.?, 455.48.0.?, 680.2.0.?, $\ldots$ |
$[ ]$ |
143650.n2 |
143650br1 |
143650.n |
143650br |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{3} \cdot 5^{13} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$61880$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$17611776$ |
$3.359116$ |
$300853103177579121/10625000$ |
$1.07029$ |
$5.93017$ |
$[1, -1, 0, -326086292, 2266535548616]$ |
\(y^2+xy=x^3-x^2-326086292x+2266535548616\) |
7.8.0.a.1, 35.16.0-7.a.1.1, 91.24.0.?, 455.48.0.?, 680.2.0.?, $\ldots$ |
$[ ]$ |
143650.o1 |
143650bs1 |
143650.o |
143650bs |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{8} \cdot 5^{6} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1198080$ |
$1.902290$ |
$7433231/4352$ |
$0.91543$ |
$3.87345$ |
$[1, 0, 1, 94974, -1211052]$ |
\(y^2+xy+y=x^3+94974x-1211052\) |
68.2.0.a.1 |
$[ ]$ |
143650.p1 |
143650bt1 |
143650.p |
143650bt |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{6} \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$27648$ |
$-0.041856$ |
$22295/1088$ |
$0.80427$ |
$1.91860$ |
$[1, 0, 1, 9, -102]$ |
\(y^2+xy+y=x^3+9x-102\) |
68.2.0.a.1 |
$[ ]$ |
143650.q1 |
143650bu1 |
143650.q |
143650bu |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{4} \cdot 5^{8} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$8840$ |
$48$ |
$0$ |
$4.010674289$ |
$1$ |
|
$3$ |
$737280$ |
$1.547903$ |
$47045881/6800$ |
$0.98870$ |
$3.59684$ |
$[1, 1, 0, -31775, 1875125]$ |
\(y^2+xy=x^3+x^2-31775x+1875125\) |
2.3.0.a.1, 4.6.0.b.1, 34.6.0.a.1, 68.12.0.e.1, 340.24.0.?, $\ldots$ |
$[(-155, 1840)]$ |
143650.q2 |
143650bu2 |
143650.q |
143650bu |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{2} \cdot 5^{10} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$8840$ |
$48$ |
$0$ |
$2.005337144$ |
$1$ |
|
$2$ |
$1474560$ |
$1.894476$ |
$214921799/722500$ |
$0.91035$ |
$3.85702$ |
$[1, 1, 0, 52725, 10240625]$ |
\(y^2+xy=x^3+x^2+52725x+10240625\) |
2.3.0.a.1, 4.6.0.a.1, 68.12.0.d.1, 260.12.0.?, 680.24.0.?, $\ldots$ |
$[(356, 8441)]$ |
143650.r1 |
143650bv1 |
143650.r |
143650bv |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{19} \cdot 5^{7} \cdot 13^{4} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1751040$ |
$2.051968$ |
$49677039188881/44564480$ |
$0.94508$ |
$4.33283$ |
$[1, 1, 0, -585250, 171952500]$ |
\(y^2+xy=x^3+x^2-585250x+171952500\) |
680.2.0.? |
$[ ]$ |
143650.s1 |
143650bw2 |
143650.s |
143650bw |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{3} \cdot 5^{7} \cdot 13^{10} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$9704448$ |
$2.901997$ |
$329286571081/196520$ |
$0.90857$ |
$5.20637$ |
$[1, 1, 0, -18579525, -30816626875]$ |
\(y^2+xy=x^3+x^2-18579525x-30816626875\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[ ]$ |
143650.s2 |
143650bw1 |
143650.s |
143650bw |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 5^{9} \cdot 13^{10} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3234816$ |
$2.352692$ |
$19882681/4250$ |
$0.88835$ |
$4.38829$ |
$[1, 1, 0, -728900, 189908750]$ |
\(y^2+xy=x^3+x^2-728900x+189908750\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[ ]$ |
143650.t1 |
143650bx1 |
143650.t |
143650bx |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2 \cdot 5^{7} \cdot 13^{8} \cdot 17^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$40$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3893760$ |
$2.340000$ |
$1324018319/835210$ |
$0.86991$ |
$4.30986$ |
$[1, 1, 0, 534375, -44895625]$ |
\(y^2+xy=x^3+x^2+534375x-44895625\) |
40.2.0.a.1 |
$[ ]$ |
143650.u1 |
143650by3 |
143650.u |
143650by |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{24} \cdot 5^{12} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$26520$ |
$384$ |
$9$ |
$21.08668784$ |
$1$ |
|
$1$ |
$26542080$ |
$3.204670$ |
$8010684753304969/4456448000000$ |
$1.04256$ |
$5.19286$ |
$[1, 1, 0, -17612000, -5603200000]$ |
\(y^2+xy=x^3+x^2-17612000x-5603200000\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-5144414705/1138, 63593992172395/1138)]$ |
143650.u2 |
143650by1 |
143650.u |
143650by |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{8} \cdot 5^{8} \cdot 13^{6} \cdot 17^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.3, 3.4.0.1 |
2B, 3B |
$26520$ |
$384$ |
$9$ |
$7.028895947$ |
$1$ |
|
$3$ |
$8847360$ |
$2.655365$ |
$1841373668746009/31443200$ |
$0.98941$ |
$5.06905$ |
$[1, 1, 0, -10788625, 13634767125]$ |
\(y^2+xy=x^3+x^2-10788625x+13634767125\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.b.1, 6.12.0.a.1, 12.24.0.f.1, $\ldots$ |
$[(-3735, 44805)]$ |
143650.u3 |
143650by2 |
143650.u |
143650by |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{10} \cdot 13^{6} \cdot 17^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$26520$ |
$384$ |
$9$ |
$3.514447973$ |
$1$ |
|
$0$ |
$17694720$ |
$3.001938$ |
$-1673672305534489/241375690000$ |
$0.99210$ |
$5.07974$ |
$[1, 1, 0, -10450625, 14529453125]$ |
\(y^2+xy=x^3+x^2-10450625x+14529453125\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[(16750/3, 1031125/3)]$ |
143650.u4 |
143650by4 |
143650.u |
143650by |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{12} \cdot 5^{18} \cdot 13^{6} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
4.6.0.5, 3.4.0.1 |
2B, 3B |
$26520$ |
$384$ |
$9$ |
$10.54334392$ |
$1$ |
|
$0$ |
$53084160$ |
$3.551243$ |
$479958568556831351/289000000000000$ |
$1.05690$ |
$5.53752$ |
$[1, 1, 0, 68916000, -44281216000]$ |
\(y^2+xy=x^3+x^2+68916000x-44281216000\) |
2.3.0.a.1, 3.4.0.a.1, 4.6.0.a.1, 6.12.0.a.1, 12.24.0.d.1, $\ldots$ |
$[(9315776/35, 40953878944/35)]$ |
143650.v1 |
143650bz4 |
143650.v |
143650bz |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{3} \cdot 5^{10} \cdot 13^{9} \cdot 17^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$26520$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$55738368$ |
$3.728962$ |
$98757259854107414041/265151195465000$ |
$0.97617$ |
$5.98608$ |
$[1, 1, 0, -406857025, -3151551529875]$ |
\(y^2+xy=x^3+x^2-406857025x-3151551529875\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 68.6.0.c.1, 104.6.0.?, $\ldots$ |
$[ ]$ |
143650.v2 |
143650bz3 |
143650.v |
143650bz |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{6} \cdot 5^{8} \cdot 13^{12} \cdot 17^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$26520$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$27869184$ |
$3.382389$ |
$65959341605440921/37942580187200$ |
$1.00558$ |
$5.37039$ |
$[1, 1, 0, -35564025, -6328526875]$ |
\(y^2+xy=x^3+x^2-35564025x-6328526875\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 34.6.0.a.1, 102.24.0.?, $\ldots$ |
$[ ]$ |
143650.v3 |
143650bz2 |
143650.v |
143650bz |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 5^{18} \cdot 13^{7} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$26520$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$18579456$ |
$3.179653$ |
$20186080966364041/1834472656250$ |
$0.93858$ |
$5.27068$ |
$[1, 1, 0, -23966400, 41452610750]$ |
\(y^2+xy=x^3+x^2-23966400x+41452610750\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 68.6.0.c.1, 104.6.0.?, $\ldots$ |
$[ ]$ |
143650.v4 |
143650bz1 |
143650.v |
143650bz |
$4$ |
$6$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 5^{12} \cdot 13^{8} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$26520$ |
$96$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$9289728$ |
$2.833080$ |
$18829800329506921/179562500$ |
$0.93620$ |
$5.26483$ |
$[1, 1, 0, -23417150, 43606220000]$ |
\(y^2+xy=x^3+x^2-23417150x+43606220000\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 34.6.0.a.1, 102.24.0.?, $\ldots$ |
$[ ]$ |
143650.w1 |
143650ca2 |
143650.w |
143650ca |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 5^{8} \cdot 13^{3} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$2.491529817$ |
$1$ |
|
$2$ |
$774144$ |
$1.406689$ |
$7495014493/4176050$ |
$0.91613$ |
$3.37588$ |
$[1, 1, 0, -13250, -118750]$ |
\(y^2+xy=x^3+x^2-13250x-118750\) |
2.3.0.a.1, 40.6.0.f.1, 104.6.0.?, 260.6.0.?, 520.12.0.? |
$[(1075, 34525)]$ |
143650.w2 |
143650ca1 |
143650.w |
143650ca |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 5^{7} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$520$ |
$12$ |
$0$ |
$4.983059634$ |
$1$ |
|
$1$ |
$387072$ |
$1.060116$ |
$3222118333/5780$ |
$0.84990$ |
$3.30479$ |
$[1, 1, 0, -10000, -388500]$ |
\(y^2+xy=x^3+x^2-10000x-388500\) |
2.3.0.a.1, 40.6.0.f.1, 104.6.0.?, 130.6.0.?, 520.12.0.? |
$[(2485/3, 110810/3)]$ |
143650.x1 |
143650cb2 |
143650.x |
143650cb |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{15} \cdot 5^{15} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$11.65496312$ |
$1$ |
|
$0$ |
$4976640$ |
$2.236916$ |
$2397007293813769/1088000000000$ |
$0.96524$ |
$4.22728$ |
$[1, 1, 0, -385375, -42922875]$ |
\(y^2+xy=x^3+x^2-385375x-42922875\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[(-22629/14, 759219/14)]$ |
143650.x2 |
143650cb1 |
143650.x |
143650cb |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{5} \cdot 5^{9} \cdot 13^{2} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$3.884987709$ |
$1$ |
|
$2$ |
$1658880$ |
$1.687611$ |
$296431397798809/19652000$ |
$0.93306$ |
$4.05127$ |
$[1, 1, 0, -192000, 32300000]$ |
\(y^2+xy=x^3+x^2-192000x+32300000\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[(251, -124)]$ |
143650.y1 |
143650cd1 |
143650.y |
143650cd |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{10} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$18.04774869$ |
$1$ |
|
$0$ |
$2154240$ |
$1.773998$ |
$84375/272$ |
$1.04213$ |
$3.73442$ |
$[1, -1, 0, 33008, 4926416]$ |
\(y^2+xy=x^3-x^2+33008x+4926416\) |
68.2.0.a.1 |
$[(-21525008/717, 694310836244/717)]$ |
143650.z1 |
143650cc1 |
143650.z |
143650cc |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{6} \cdot 13^{4} \cdot 17^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1336320$ |
$1.583641$ |
$-298652123601/78608$ |
$1.12598$ |
$3.90222$ |
$[1, -1, 0, -106417, -13338259]$ |
\(y^2+xy=x^3-x^2-106417x-13338259\) |
68.2.0.a.1 |
$[ ]$ |
143650.ba1 |
143650a1 |
143650.ba |
143650a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{4} \cdot 5^{4} \cdot 13^{6} \cdot 17 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$430848$ |
$0.969280$ |
$84375/272$ |
$1.04213$ |
$2.92124$ |
$[1, -1, 1, 1320, 39147]$ |
\(y^2+xy+y=x^3-x^2+1320x+39147\) |
68.2.0.a.1 |
$[ ]$ |
143650.bb1 |
143650b2 |
143650.bb |
143650b |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{11} \cdot 5^{6} \cdot 13^{8} \cdot 17^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$136$ |
$12$ |
$0$ |
$1.595568819$ |
$1$ |
|
$6$ |
$283852800$ |
$4.432617$ |
$729596217166155478587889/697759680872204288$ |
$1.03716$ |
$6.73618$ |
$[1, 0, 0, -7924034063, 271273520330617]$ |
\(y^2+xy=x^3-7924034063x+271273520330617\) |
2.3.0.a.1, 8.6.0.b.1, 68.6.0.c.1, 136.12.0.? |
$[(64806, 5437789)]$ |
143650.bb2 |
143650b1 |
143650.bb |
143650b |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{22} \cdot 5^{6} \cdot 13^{10} \cdot 17^{5} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$136$ |
$12$ |
$0$ |
$0.797784409$ |
$1$ |
|
$7$ |
$141926400$ |
$4.086037$ |
$336811992790162430449/170089663019614208$ |
$1.03772$ |
$6.08939$ |
$[1, 0, 0, -612418063, 2081754058617]$ |
\(y^2+xy=x^3-612418063x+2081754058617\) |
2.3.0.a.1, 8.6.0.c.1, 34.6.0.a.1, 136.12.0.? |
$[(-5498, 2301149)]$ |
143650.bc1 |
143650c1 |
143650.bc |
143650c |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{3} \cdot 5^{11} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$680$ |
$2$ |
$0$ |
$1.627720194$ |
$1$ |
|
$4$ |
$276480$ |
$1.128107$ |
$39878626801/425000$ |
$0.86324$ |
$3.30065$ |
$[1, 0, 0, -9838, 371292]$ |
\(y^2+xy=x^3-9838x+371292\) |
680.2.0.? |
$[(62, -6)]$ |
143650.bd1 |
143650d2 |
143650.bd |
143650d |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2 \cdot 5^{6} \cdot 13^{7} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$9.482322554$ |
$1$ |
|
$0$ |
$2064384$ |
$1.938812$ |
$297141543217/7514$ |
$0.90457$ |
$4.33374$ |
$[1, 0, 0, -587363, -173309033]$ |
\(y^2+xy=x^3-587363x-173309033\) |
2.3.0.a.1, 68.6.0.c.1, 104.6.0.?, 1768.12.0.? |
$[(-86817/14, 443255/14)]$ |
143650.bd2 |
143650d1 |
143650.bd |
143650d |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( 2^{2} \cdot 5^{6} \cdot 13^{8} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1768$ |
$12$ |
$0$ |
$4.741161277$ |
$1$ |
|
$1$ |
$1032192$ |
$1.592237$ |
$81182737/11492$ |
$0.81939$ |
$3.64278$ |
$[1, 0, 0, -38113, -2492283]$ |
\(y^2+xy=x^3-38113x-2492283\) |
2.3.0.a.1, 34.6.0.a.1, 104.6.0.?, 1768.12.0.? |
$[(-337/2, 3137/2)]$ |
143650.be1 |
143650e1 |
143650.be |
143650e |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{6} \cdot 5^{8} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$68$ |
$2$ |
$0$ |
$0.768971116$ |
$1$ |
|
$4$ |
$138240$ |
$0.762863$ |
$22295/1088$ |
$0.80427$ |
$2.73178$ |
$[1, 1, 1, 237, -12719]$ |
\(y^2+xy+y=x^3+x^2+237x-12719\) |
68.2.0.a.1 |
$[(35, 182)]$ |
143650.bf1 |
143650f2 |
143650.bf |
143650f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{7} \cdot 5^{15} \cdot 13^{6} \cdot 17^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$3.693688718$ |
$1$ |
|
$2$ |
$14152320$ |
$3.176968$ |
$-32391289681150609/1228250000000$ |
$1.00352$ |
$5.31585$ |
$[1, 1, 1, -28058313, -59061992969]$ |
\(y^2+xy+y=x^3+x^2-28058313x-59061992969\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[(21575, 3051712)]$ |
143650.bf2 |
143650f1 |
143650.bf |
143650f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 13^{2} \cdot 17 \) |
\( - 2^{21} \cdot 5^{9} \cdot 13^{6} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$26520$ |
$16$ |
$0$ |
$1.231229572$ |
$1$ |
|
$4$ |
$4717440$ |
$2.627659$ |
$7023836099951/4456448000$ |
$0.99857$ |
$4.60009$ |
$[1, 1, 1, 1685687, -260808969]$ |
\(y^2+xy+y=x^3+x^2+1685687x-260808969\) |
3.4.0.a.1, 195.8.0.?, 680.2.0.?, 2040.8.0.?, 5304.8.0.?, $\ldots$ |
$[(1295, 63352)]$ |