| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 143344.a1 |
143344l2 |
143344.a |
143344l |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{11} \cdot 17^{6} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$248$ |
$12$ |
$0$ |
$1.769456718$ |
$1$ |
|
$3$ |
$294912$ |
$1.315947$ |
$1825346/961$ |
$0.88772$ |
$3.28823$ |
$[0, 1, 0, -9344, 101332]$ |
\(y^2=x^3+x^2-9344x+101332\) |
2.3.0.a.1, 8.6.0.b.1, 124.6.0.?, 248.12.0.? |
$[(164, 1734)]$ |
$1$ |
| 143344.a2 |
143344l1 |
143344.a |
143344l |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{10} \cdot 17^{6} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$248$ |
$12$ |
$0$ |
$3.538913436$ |
$1$ |
|
$3$ |
$147456$ |
$0.969374$ |
$48668/31$ |
$0.79741$ |
$2.92458$ |
$[0, 1, 0, 2216, 13476]$ |
\(y^2=x^3+x^2+2216x+13476\) |
2.3.0.a.1, 8.6.0.c.1, 62.6.0.b.1, 248.12.0.? |
$[(66, 672)]$ |
$1$ |
| 143344.b1 |
143344m1 |
143344.b |
143344m |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1.214415332$ |
$1$ |
|
$2$ |
$73728$ |
$0.613286$ |
$-256/31$ |
$0.78373$ |
$2.58278$ |
$[0, 1, 0, -96, -5309]$ |
\(y^2=x^3+x^2-96x-5309\) |
62.2.0.a.1 |
$[(45, 289)]$ |
$1$ |
| 143344.c1 |
143344a1 |
143344.c |
143344a |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{14} \cdot 17^{9} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2924544$ |
$2.354820$ |
$801765089/3844$ |
$0.86422$ |
$4.57500$ |
$[0, 1, 0, -1521392, 718781908]$ |
\(y^2=x^3+x^2-1521392x+718781908\) |
2.3.0.a.1, 8.6.0.e.1, 34.6.0.a.1, 136.12.0.? |
$[ ]$ |
$1$ |
| 143344.c2 |
143344a2 |
143344.c |
143344a |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{13} \cdot 17^{9} \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$136$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$5849088$ |
$2.701393$ |
$-90518849/1847042$ |
$0.92434$ |
$4.69371$ |
$[0, 1, 0, -735312, 1461155860]$ |
\(y^2=x^3+x^2-735312x+1461155860\) |
2.3.0.a.1, 8.6.0.e.1, 68.6.0.c.1, 136.12.0.? |
$[ ]$ |
$1$ |
| 143344.d1 |
143344b1 |
143344.d |
143344b |
$2$ |
$3$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6324$ |
$16$ |
$0$ |
$5.146237371$ |
$1$ |
|
$0$ |
$110592$ |
$0.644845$ |
$-87808/31$ |
$0.69864$ |
$2.66412$ |
$[0, 1, 0, -674, -8777]$ |
\(y^2=x^3+x^2-674x-8777\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 204.8.0.?, 6324.16.0.? |
$[(2519/5, 122247/5)]$ |
$1$ |
| 143344.d2 |
143344b2 |
143344.d |
143344b |
$2$ |
$3$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6324$ |
$16$ |
$0$ |
$1.715412457$ |
$1$ |
|
$2$ |
$331776$ |
$1.194151$ |
$38112512/29791$ |
$0.88754$ |
$3.13551$ |
$[0, 1, 0, 5106, 84859]$ |
\(y^2=x^3+x^2+5106x+84859\) |
3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 204.8.0.?, 6324.16.0.? |
$[(895, 26877)]$ |
$1$ |
| 143344.e1 |
143344n1 |
143344.e |
143344n |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1054$ |
$2$ |
$0$ |
$4.987157628$ |
$1$ |
|
$0$ |
$82944$ |
$0.902836$ |
$-4000000/527$ |
$0.73553$ |
$2.96292$ |
$[0, -1, 0, -2408, -49601]$ |
\(y^2=x^3-x^2-2408x-49601\) |
1054.2.0.? |
$[(4601/4, 306629/4)]$ |
$1$ |
| 143344.f1 |
143344c1 |
143344.f |
143344c |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1054$ |
$2$ |
$0$ |
$13.05408448$ |
$1$ |
|
$0$ |
$274176$ |
$1.321491$ |
$256/31$ |
$0.67265$ |
$3.29785$ |
$[0, -1, 0, 1638, -368657]$ |
\(y^2=x^3-x^2+1638x-368657\) |
1054.2.0.? |
$[(417517/33, 270049715/33)]$ |
$1$ |
| 143344.g1 |
143344o1 |
143344.g |
143344o |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{8} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$165888$ |
$1.102037$ |
$-9199872/8959$ |
$0.70384$ |
$3.09891$ |
$[0, 0, 0, -3179, -112999]$ |
\(y^2=x^3-3179x-112999\) |
62.2.0.a.1 |
$[ ]$ |
$1$ |
| 143344.h1 |
143344p1 |
143344.h |
143344p |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{12} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$6137856$ |
$2.718925$ |
$-2665856613954845952/748264639$ |
$1.02878$ |
$5.23869$ |
$[0, 0, 0, -21036599, -37137401391]$ |
\(y^2=x^3-21036599x-37137401391\) |
62.2.0.a.1 |
$[ ]$ |
$1$ |
| 143344.i1 |
143344d1 |
143344.i |
143344d |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$124416$ |
$0.857618$ |
$-33958656/31$ |
$1.22690$ |
$3.12592$ |
$[0, 0, 0, -4913, 132651]$ |
\(y^2=x^3-4913x+132651\) |
62.2.0.a.1 |
$[ ]$ |
$1$ |
| 143344.j1 |
143344e2 |
143344.j |
143344e |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{17} \cdot 17^{8} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.6 |
2B |
$4216$ |
$12$ |
$0$ |
$2.687128333$ |
$1$ |
|
$3$ |
$2211840$ |
$2.235104$ |
$450335804625/8887328$ |
$0.90500$ |
$4.39234$ |
$[0, 0, 0, -738395, -240019702]$ |
\(y^2=x^3-738395x-240019702\) |
2.3.0.a.1, 8.6.0.b.1, 2108.6.0.?, 4216.12.0.? |
$[(12733, 1433440)]$ |
$1$ |
| 143344.j2 |
143344e1 |
143344.j |
143344e |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{22} \cdot 17^{7} \cdot 31 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.1 |
2B |
$4216$ |
$12$ |
$0$ |
$5.374256666$ |
$1$ |
|
$3$ |
$1105920$ |
$1.888531$ |
$3375/539648$ |
$1.11262$ |
$3.87185$ |
$[0, 0, 0, 1445, -11113206]$ |
\(y^2=x^3+1445x-11113206\) |
2.3.0.a.1, 8.6.0.c.1, 1054.6.0.?, 4216.12.0.? |
$[(271, 3030)]$ |
$1$ |
| 143344.k1 |
143344f1 |
143344.k |
143344f |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{28} \cdot 17^{9} \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.3.82 |
2B |
$16864$ |
$384$ |
$21$ |
$1$ |
$1$ |
|
$1$ |
$33423360$ |
$3.934322$ |
$777228872334890625/60523872256$ |
$1.08384$ |
$6.31780$ |
$[0, 0, 0, -1505711675, 22487005115498]$ |
\(y^2=x^3-1505711675x+22487005115498\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.ch.1, 32.96.3.bs.1, $\ldots$ |
$[ ]$ |
$1$ |
| 143344.k2 |
143344f2 |
143344.k |
143344f |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{20} \cdot 17^{9} \cdot 31^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.3.230 |
2B |
$16864$ |
$384$ |
$21$ |
$1$ |
$4$ |
$2$ |
$1$ |
$66846720$ |
$4.280891$ |
$-631595585199146625/218340105584896$ |
$1.07373$ |
$6.33977$ |
$[0, 0, 0, -1405093435, 25621685888106]$ |
\(y^2=x^3-1405093435x+25621685888106\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bl.1, 32.96.3.bh.1, $\ldots$ |
$[ ]$ |
$1$ |
| 143344.l1 |
143344g1 |
143344.l |
143344g |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{28} \cdot 17^{3} \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.3.82 |
2B |
$16864$ |
$384$ |
$21$ |
$2.866230765$ |
$1$ |
|
$3$ |
$1966080$ |
$2.517715$ |
$777228872334890625/60523872256$ |
$1.08384$ |
$4.88604$ |
$[0, 0, 0, -5210075, 4577041546]$ |
\(y^2=x^3-5210075x+4577041546\) |
2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.ch.1, 32.96.3.bs.1, $\ldots$ |
$[(1407, 5642)]$ |
$1$ |
| 143344.l2 |
143344g2 |
143344.l |
143344g |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{20} \cdot 17^{3} \cdot 31^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
32.96.3.230 |
2B |
$16864$ |
$384$ |
$21$ |
$5.732461530$ |
$1$ |
|
$1$ |
$3932160$ |
$2.864288$ |
$-631595585199146625/218340105584896$ |
$1.07373$ |
$4.90801$ |
$[0, 0, 0, -4861915, 5215079562]$ |
\(y^2=x^3-4861915x+5215079562\) |
2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bl.1, 32.96.3.bh.1, $\ldots$ |
$[(34127/7, 15966054/7)]$ |
$1$ |
| 143344.m1 |
143344h4 |
143344.m |
143344h |
$4$ |
$4$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{13} \cdot 17^{6} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$4216$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$1$ |
$884736$ |
$2.001675$ |
$3999236143617/62$ |
$1.07559$ |
$4.57628$ |
$[0, 0, 0, -1529099, -727782342]$ |
\(y^2=x^3-1529099x-727782342\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 136.24.0.?, 248.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 143344.m2 |
143344h3 |
143344.m |
143344h |
$4$ |
$4$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{13} \cdot 17^{6} \cdot 31^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$4216$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$884736$ |
$2.001675$ |
$3196010817/1847042$ |
$1.17908$ |
$3.97559$ |
$[0, 0, 0, -141899, 756602]$ |
\(y^2=x^3-141899x+756602\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 68.12.0-4.c.1.2, 136.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 143344.m3 |
143344h2 |
143344.m |
143344h |
$4$ |
$4$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{14} \cdot 17^{6} \cdot 31^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$4216$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$3$ |
$442368$ |
$1.655102$ |
$979146657/3844$ |
$1.02504$ |
$3.87596$ |
$[0, 0, 0, -95659, -11349030]$ |
\(y^2=x^3-95659x-11349030\) |
2.6.0.a.1, 8.12.0.a.1, 68.12.0-2.a.1.1, 124.12.0.?, 136.24.0.?, $\ldots$ |
$[ ]$ |
$1$ |
| 143344.m4 |
143344h1 |
143344.m |
143344h |
$4$ |
$4$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{16} \cdot 17^{6} \cdot 31 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$4216$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$221184$ |
$1.308529$ |
$-35937/496$ |
$0.93090$ |
$3.28640$ |
$[0, 0, 0, -3179, -343910]$ |
\(y^2=x^3-3179x-343910\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 62.6.0.b.1, 68.12.0-4.c.1.1, $\ldots$ |
$[ ]$ |
$1$ |
| 143344.n1 |
143344q1 |
143344.n |
143344q |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{6} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$82944$ |
$0.616269$ |
$6912/31$ |
$0.65713$ |
$2.57074$ |
$[0, 0, 0, 289, 4913]$ |
\(y^2=x^3+289x+4913\) |
62.2.0.a.1 |
$[ ]$ |
$1$ |
| 143344.o1 |
143344i1 |
143344.o |
143344i |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{3} \cdot 31 \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1054$ |
$2$ |
$0$ |
$5.160878632$ |
$1$ |
|
$2$ |
$16128$ |
$-0.095116$ |
$256/31$ |
$0.67265$ |
$1.86609$ |
$[0, 1, 0, 6, -73]$ |
\(y^2=x^3+x^2+6x-73\) |
1054.2.0.? |
$[(7, 19), (31/3, 17/3)]$ |
$1$ |
| 143344.p1 |
143344j1 |
143344.p |
143344j |
$2$ |
$3$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{7} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6324$ |
$16$ |
$0$ |
$13.94400514$ |
$1$ |
|
$0$ |
$290304$ |
$1.346861$ |
$-71938912000/527$ |
$0.83482$ |
$3.77082$ |
$[0, 1, 0, -63098, -6121705]$ |
\(y^2=x^3+x^2-63098x-6121705\) |
3.4.0.a.1, 204.8.0.?, 372.8.0.?, 1054.2.0.?, 3162.8.0.?, $\ldots$ |
$[(30021385/252, 133820997715/252)]$ |
$1$ |
| 143344.p2 |
143344j2 |
143344.p |
143344j |
$2$ |
$3$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{9} \cdot 31^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$6324$ |
$16$ |
$0$ |
$4.648001714$ |
$1$ |
|
$0$ |
$870912$ |
$1.896168$ |
$-11453152000/146363183$ |
$0.88560$ |
$3.88044$ |
$[0, 1, 0, -34198, -11706341]$ |
\(y^2=x^3+x^2-34198x-11706341\) |
3.4.0.a.1, 204.8.0.?, 372.8.0.?, 1054.2.0.?, 3162.8.0.?, $\ldots$ |
$[(123865/12, 42187931/12)]$ |
$1$ |
| 143344.q1 |
143344r1 |
143344.q |
143344r |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{9} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1054$ |
$2$ |
$0$ |
$9.801216717$ |
$1$ |
|
$0$ |
$525312$ |
$1.470221$ |
$-19102326016/152303$ |
$0.89089$ |
$3.66029$ |
$[0, 1, 0, -40556, 3151727]$ |
\(y^2=x^3+x^2-40556x+3151727\) |
1054.2.0.? |
$[(27949/15, 724393/15)]$ |
$1$ |
| 143344.r1 |
143344k1 |
143344.r |
143344k |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( 2^{14} \cdot 17^{3} \cdot 31^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$136$ |
$12$ |
$0$ |
$1.359580130$ |
$1$ |
|
$3$ |
$172032$ |
$0.938213$ |
$801765089/3844$ |
$0.86422$ |
$3.14324$ |
$[0, -1, 0, -5264, 148160]$ |
\(y^2=x^3-x^2-5264x+148160\) |
2.3.0.a.1, 8.6.0.e.1, 34.6.0.a.1, 136.12.0.? |
$[(58, 186)]$ |
$1$ |
| 143344.r2 |
143344k2 |
143344.r |
143344k |
$2$ |
$2$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{13} \cdot 17^{3} \cdot 31^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$136$ |
$12$ |
$0$ |
$2.719160260$ |
$1$ |
|
$3$ |
$344064$ |
$1.284786$ |
$-90518849/1847042$ |
$0.92434$ |
$3.26195$ |
$[0, -1, 0, -2544, 298304]$ |
\(y^2=x^3-x^2-2544x+298304\) |
2.3.0.a.1, 8.6.0.e.1, 68.6.0.c.1, 136.12.0.? |
$[(74, 714)]$ |
$1$ |
| 143344.s1 |
143344s1 |
143344.s |
143344s |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{10} \cdot 31 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$62$ |
$2$ |
$0$ |
$27.09945352$ |
$1$ |
|
$0$ |
$1363968$ |
$1.564400$ |
$2141549312/2589151$ |
$0.81814$ |
$3.48202$ |
$[0, -1, 0, 19556, -1105029]$ |
\(y^2=x^3-x^2+19556x-1105029\) |
62.2.0.a.1 |
$[(9876671072739/40775, 31045489074273203013/40775)]$ |
$1$ |
| 143344.t1 |
143344t1 |
143344.t |
143344t |
$1$ |
$1$ |
\( 2^{4} \cdot 17^{2} \cdot 31 \) |
\( - 2^{4} \cdot 17^{7} \cdot 31 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$1054$ |
$2$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$285696$ |
$0.859119$ |
$864000/527$ |
$0.64821$ |
$2.81657$ |
$[0, 0, 0, 1445, 4913]$ |
\(y^2=x^3+1445x+4913\) |
1054.2.0.? |
$[ ]$ |
$1$ |