Learn more

Refine search


Results (31 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
143344.a1 143344.a \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.769456718$ $[0, 1, 0, -9344, 101332]$ \(y^2=x^3+x^2-9344x+101332\) 2.3.0.a.1, 8.6.0.b.1, 124.6.0.?, 248.12.0.? $[(164, 1734)]$
143344.a2 143344.a \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $3.538913436$ $[0, 1, 0, 2216, 13476]$ \(y^2=x^3+x^2+2216x+13476\) 2.3.0.a.1, 8.6.0.c.1, 62.6.0.b.1, 248.12.0.? $[(66, 672)]$
143344.b1 143344.b \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.214415332$ $[0, 1, 0, -96, -5309]$ \(y^2=x^3+x^2-96x-5309\) 62.2.0.a.1 $[(45, 289)]$
143344.c1 143344.c \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1521392, 718781908]$ \(y^2=x^3+x^2-1521392x+718781908\) 2.3.0.a.1, 8.6.0.e.1, 34.6.0.a.1, 136.12.0.? $[ ]$
143344.c2 143344.c \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -735312, 1461155860]$ \(y^2=x^3+x^2-735312x+1461155860\) 2.3.0.a.1, 8.6.0.e.1, 68.6.0.c.1, 136.12.0.? $[ ]$
143344.d1 143344.d \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $5.146237371$ $[0, 1, 0, -674, -8777]$ \(y^2=x^3+x^2-674x-8777\) 3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 204.8.0.?, 6324.16.0.? $[(2519/5, 122247/5)]$
143344.d2 143344.d \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $1.715412457$ $[0, 1, 0, 5106, 84859]$ \(y^2=x^3+x^2+5106x+84859\) 3.4.0.a.1, 62.2.0.a.1, 186.8.0.?, 204.8.0.?, 6324.16.0.? $[(895, 26877)]$
143344.e1 143344.e \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $4.987157628$ $[0, -1, 0, -2408, -49601]$ \(y^2=x^3-x^2-2408x-49601\) 1054.2.0.? $[(4601/4, 306629/4)]$
143344.f1 143344.f \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $13.05408448$ $[0, -1, 0, 1638, -368657]$ \(y^2=x^3-x^2+1638x-368657\) 1054.2.0.? $[(417517/33, 270049715/33)]$
143344.g1 143344.g \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -3179, -112999]$ \(y^2=x^3-3179x-112999\) 62.2.0.a.1 $[ ]$
143344.h1 143344.h \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -21036599, -37137401391]$ \(y^2=x^3-21036599x-37137401391\) 62.2.0.a.1 $[ ]$
143344.i1 143344.i \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4913, 132651]$ \(y^2=x^3-4913x+132651\) 62.2.0.a.1 $[ ]$
143344.j1 143344.j \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $2.687128333$ $[0, 0, 0, -738395, -240019702]$ \(y^2=x^3-738395x-240019702\) 2.3.0.a.1, 8.6.0.b.1, 2108.6.0.?, 4216.12.0.? $[(12733, 1433440)]$
143344.j2 143344.j \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $5.374256666$ $[0, 0, 0, 1445, -11113206]$ \(y^2=x^3+1445x-11113206\) 2.3.0.a.1, 8.6.0.c.1, 1054.6.0.?, 4216.12.0.? $[(271, 3030)]$
143344.k1 143344.k \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1505711675, 22487005115498]$ \(y^2=x^3-1505711675x+22487005115498\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.ch.1, 32.96.3.bs.1, $\ldots$ $[ ]$
143344.k2 143344.k \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1405093435, 25621685888106]$ \(y^2=x^3-1405093435x+25621685888106\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bl.1, 32.96.3.bh.1, $\ldots$ $[ ]$
143344.l1 143344.l \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $2.866230765$ $[0, 0, 0, -5210075, 4577041546]$ \(y^2=x^3-5210075x+4577041546\) 2.3.0.a.1, 4.12.0.f.1, 8.24.0.bt.1, 16.48.1.ch.1, 32.96.3.bs.1, $\ldots$ $[(1407, 5642)]$
143344.l2 143344.l \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $5.732461530$ $[0, 0, 0, -4861915, 5215079562]$ \(y^2=x^3-4861915x+5215079562\) 2.3.0.a.1, 4.6.0.e.1, 8.24.0.bi.1, 16.48.1.bl.1, 32.96.3.bh.1, $\ldots$ $[(34127/7, 15966054/7)]$
143344.m1 143344.m \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1529099, -727782342]$ \(y^2=x^3-1529099x-727782342\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 136.24.0.?, 248.24.0.?, $\ldots$ $[ ]$
143344.m2 143344.m \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -141899, 756602]$ \(y^2=x^3-141899x+756602\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 68.12.0-4.c.1.2, 136.24.0.?, $\ldots$ $[ ]$
143344.m3 143344.m \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, 0, 0, -95659, -11349030]$ \(y^2=x^3-95659x-11349030\) 2.6.0.a.1, 8.12.0.a.1, 68.12.0-2.a.1.1, 124.12.0.?, 136.24.0.?, $\ldots$ $[ ]$
143344.m4 143344.m \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3179, -343910]$ \(y^2=x^3-3179x-343910\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 62.6.0.b.1, 68.12.0-4.c.1.1, $\ldots$ $[ ]$
143344.n1 143344.n \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 289, 4913]$ \(y^2=x^3+289x+4913\) 62.2.0.a.1 $[ ]$
143344.o1 143344.o \( 2^{4} \cdot 17^{2} \cdot 31 \) $2$ $\mathsf{trivial}$ $5.160878632$ $[0, 1, 0, 6, -73]$ \(y^2=x^3+x^2+6x-73\) 1054.2.0.? $[(7, 19), (31/3, 17/3)]$
143344.p1 143344.p \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $13.94400514$ $[0, 1, 0, -63098, -6121705]$ \(y^2=x^3+x^2-63098x-6121705\) 3.4.0.a.1, 204.8.0.?, 372.8.0.?, 1054.2.0.?, 3162.8.0.?, $\ldots$ $[(30021385/252, 133820997715/252)]$
143344.p2 143344.p \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $4.648001714$ $[0, 1, 0, -34198, -11706341]$ \(y^2=x^3+x^2-34198x-11706341\) 3.4.0.a.1, 204.8.0.?, 372.8.0.?, 1054.2.0.?, 3162.8.0.?, $\ldots$ $[(123865/12, 42187931/12)]$
143344.q1 143344.q \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $9.801216717$ $[0, 1, 0, -40556, 3151727]$ \(y^2=x^3+x^2-40556x+3151727\) 1054.2.0.? $[(27949/15, 724393/15)]$
143344.r1 143344.r \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $1.359580130$ $[0, -1, 0, -5264, 148160]$ \(y^2=x^3-x^2-5264x+148160\) 2.3.0.a.1, 8.6.0.e.1, 34.6.0.a.1, 136.12.0.? $[(58, 186)]$
143344.r2 143344.r \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\Z/2\Z$ $2.719160260$ $[0, -1, 0, -2544, 298304]$ \(y^2=x^3-x^2-2544x+298304\) 2.3.0.a.1, 8.6.0.e.1, 68.6.0.c.1, 136.12.0.? $[(74, 714)]$
143344.s1 143344.s \( 2^{4} \cdot 17^{2} \cdot 31 \) $1$ $\mathsf{trivial}$ $27.09945352$ $[0, -1, 0, 19556, -1105029]$ \(y^2=x^3-x^2+19556x-1105029\) 62.2.0.a.1 $[(9876671072739/40775, 31045489074273203013/40775)]$
143344.t1 143344.t \( 2^{4} \cdot 17^{2} \cdot 31 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1445, 4913]$ \(y^2=x^3+1445x+4913\) 1054.2.0.? $[ ]$
  displayed columns for results