Learn more

Refine search


Results (30 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
14196.a1 14196.a \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.651832926$ $[0, -1, 0, -6140, -182664]$ \(y^2=x^3-x^2-6140x-182664\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.a.1, 84.12.0.? $[(-46, 18)]$
14196.a2 14196.a \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.825916463$ $[0, -1, 0, -225, -5214]$ \(y^2=x^3-x^2-225x-5214\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.b.1, 84.12.0.? $[(35, 169)]$
14196.b1 14196.b \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -232390604, 1363381337304]$ \(y^2=x^3-x^2-232390604x+1363381337304\) 2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? $[ ]$
14196.b2 14196.b \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -16172849, 16171749450]$ \(y^2=x^3-x^2-16172849x+16171749450\) 2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? $[ ]$
14196.c1 14196.c \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -61741, -6027191]$ \(y^2=x^3-x^2-61741x-6027191\) 182.2.0.? $[ ]$
14196.d1 14196.d \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.328096615$ $[0, -1, 0, -1052588, 415768248]$ \(y^2=x^3-x^2-1052588x+415768248\) 2.3.0.a.1, 12.6.0.c.1, 28.6.0.a.1, 84.12.0.? $[(-391, 27702)]$
14196.d2 14196.d \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.164048307$ $[0, -1, 0, -52953, 9116730]$ \(y^2=x^3-x^2-52953x+9116730\) 2.3.0.a.1, 6.6.0.a.1, 28.6.0.b.1, 84.12.0.? $[(74, 2366)]$
14196.e1 14196.e \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.787753753$ $[0, -1, 0, -334845, 187376409]$ \(y^2=x^3-x^2-334845x+187376409\) 182.2.0.? $[(360, 10647)]$
14196.f1 14196.f \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $13.16203781$ $[0, -1, 0, -1375092, 620988120]$ \(y^2=x^3-x^2-1375092x+620988120\) 2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? $[(25496869/6, 128744705285/6)]$
14196.f2 14196.f \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $6.581018905$ $[0, -1, 0, -95697, 7390278]$ \(y^2=x^3-x^2-95697x+7390278\) 2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? $[(708246, 596040606)]$
14196.g1 14196.g \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -81852, 9040680]$ \(y^2=x^3-x^2-81852x+9040680\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 1092.12.0.? $[ ]$
14196.g2 14196.g \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -4957, 151618]$ \(y^2=x^3-x^2-4957x+151618\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? $[ ]$
14196.h1 14196.h \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.749663161$ $[0, 1, 0, -86098965, -307528130376]$ \(y^2=x^3+x^2-86098965x-307528130376\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ $[(21012, 2675946)]$
14196.h2 14196.h \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $7.499326322$ $[0, 1, 0, -85209180, -314194399596]$ \(y^2=x^3+x^2-85209180x-314194399596\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.1, 52.12.0.l.1, $\ldots$ $[(84021/2, 21413049/2)]$
14196.i1 14196.i \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 5859, 607023]$ \(y^2=x^3+x^2+5859x+607023\) 182.2.0.? $[ ]$
14196.j1 14196.j \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, 16844, -12432172]$ \(y^2=x^3+x^2+16844x-12432172\) 4.2.0.a.1, 56.4.0-4.a.1.1 $[ ]$
14196.k1 14196.k \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -29293, 1461656]$ \(y^2=x^3+x^2-29293x+1461656\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bv.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ $[ ]$
14196.k2 14196.k \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 69572, 9291764]$ \(y^2=x^3+x^2+69572x+9291764\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bs.1, 52.12.0.l.1, 56.12.0.bs.1, $\ldots$ $[ ]$
14196.l1 14196.l \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $10.08762259$ $[0, 1, 0, -308988, -66212028]$ \(y^2=x^3+x^2-308988x-66212028\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.j.1, 28.6.0.a.1, $\ldots$ $[(208477/18, 7797491/18)]$
14196.l2 14196.l \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.043811296$ $[0, 1, 0, -19153, -1057120]$ \(y^2=x^3+x^2-19153x-1057120\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0.b.1, 28.6.0.b.1, 39.8.0-3.a.1.2, $\ldots$ $[(1693/2, 65403/2)]$
14196.l3 14196.l \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $3.362540864$ $[0, 1, 0, -4788, -42444]$ \(y^2=x^3+x^2-4788x-42444\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.j.1, 28.6.0.a.1, $\ldots$ $[(-21, 222)]$
14196.l4 14196.l \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.681270432$ $[0, 1, 0, 1127, -4588]$ \(y^2=x^3+x^2+1127x-4588\) 2.3.0.a.1, 3.4.0.a.1, 6.24.0.b.1, 28.6.0.b.1, 39.8.0-3.a.1.1, $\ldots$ $[(368, 7098)]$
14196.m1 14196.m \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.296699130$ $[0, 1, 0, -173, 612]$ \(y^2=x^3+x^2-173x+612\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bv.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ $[(1, 21)]$
14196.m2 14196.m \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\Z/2\Z$ $0.593398261$ $[0, 1, 0, 412, 4356]$ \(y^2=x^3+x^2+412x+4356\) 2.3.0.a.1, 4.6.0.e.1, 24.12.0.bs.1, 52.12.0.l.1, 56.12.0.bs.1, $\ldots$ $[(4, 78)]$
14196.n1 14196.n \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.205044669$ $[0, 1, 0, 100, -5628]$ \(y^2=x^3+x^2+100x-5628\) 4.2.0.a.1, 728.4.0.? $[(52, 378)]$
14196.o1 14196.o \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.362115582$ $[0, 1, 0, 35, 287]$ \(y^2=x^3+x^2+35x+287\) 182.2.0.? $[(17, 78)]$
14196.p1 14196.p \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -68332, 5625140]$ \(y^2=x^3+x^2-68332x+5625140\) 2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 1092.12.0.? $[ ]$
14196.p2 14196.p \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 8563, 519312]$ \(y^2=x^3+x^2+8563x+519312\) 2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? $[ ]$
14196.q1 14196.q \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -509461, -140133148]$ \(y^2=x^3+x^2-509461x-140133148\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ $[ ]$
14196.q2 14196.q \( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -504196, -143165788]$ \(y^2=x^3+x^2-504196x-143165788\) 2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.1, 52.12.0.l.1, $\ldots$ $[ ]$
  displayed columns for results