Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
14196.a1 |
14196f2 |
14196.a |
14196f |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 7 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$1.651832926$ |
$1$ |
|
$5$ |
$23040$ |
$0.958488$ |
$20720464/63$ |
$0.91015$ |
$3.95174$ |
$[0, -1, 0, -6140, -182664]$ |
\(y^2=x^3-x^2-6140x-182664\) |
2.3.0.a.1, 12.6.0.c.1, 28.6.0.a.1, 84.12.0.? |
$[(-46, 18)]$ |
14196.a2 |
14196f1 |
14196.a |
14196f |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$0.825916463$ |
$1$ |
|
$7$ |
$11520$ |
$0.611915$ |
$-16384/147$ |
$1.05520$ |
$3.20791$ |
$[0, -1, 0, -225, -5214]$ |
\(y^2=x^3-x^2-225x-5214\) |
2.3.0.a.1, 6.6.0.a.1, 28.6.0.b.1, 84.12.0.? |
$[(35, 169)]$ |
14196.b1 |
14196g2 |
14196.b |
14196g |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 7^{8} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2156544$ |
$3.500229$ |
$511268777852836624/113468578083$ |
$1.03581$ |
$7.25944$ |
$[0, -1, 0, -232390604, 1363381337304]$ |
\(y^2=x^3-x^2-232390604x+1363381337304\) |
2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? |
$[ ]$ |
14196.b2 |
14196g1 |
14196.b |
14196g |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 7^{4} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1078272$ |
$3.153656$ |
$2757231177908224/930196594089$ |
$1.08644$ |
$6.42317$ |
$[0, -1, 0, -16172849, 16171749450]$ |
\(y^2=x^3-x^2-16172849x+16171749450\) |
2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? |
$[ ]$ |
14196.c1 |
14196a1 |
14196.c |
14196a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 7 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$96768$ |
$1.632912$ |
$-21064523776/597051$ |
$0.93385$ |
$4.68098$ |
$[0, -1, 0, -61741, -6027191]$ |
\(y^2=x^3-x^2-61741x-6027191\) |
182.2.0.? |
$[ ]$ |
14196.d1 |
14196d2 |
14196.d |
14196d |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 7 \cdot 13^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$4.328096615$ |
$1$ |
|
$3$ |
$161280$ |
$2.188309$ |
$104375673106000/69854967$ |
$0.95519$ |
$5.56589$ |
$[0, -1, 0, -1052588, 415768248]$ |
\(y^2=x^3-x^2-1052588x+415768248\) |
2.3.0.a.1, 12.6.0.c.1, 28.6.0.a.1, 84.12.0.? |
$[(-391, 27702)]$ |
14196.d2 |
14196d1 |
14196.d |
14196d |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 7^{2} \cdot 13^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$84$ |
$12$ |
$0$ |
$2.164048307$ |
$1$ |
|
$3$ |
$80640$ |
$1.841734$ |
$-212629504000/340075827$ |
$0.99412$ |
$4.76643$ |
$[0, -1, 0, -52953, 9116730]$ |
\(y^2=x^3-x^2-52953x+9116730\) |
2.3.0.a.1, 6.6.0.a.1, 28.6.0.b.1, 84.12.0.? |
$[(74, 2366)]$ |
14196.e1 |
14196e1 |
14196.e |
14196e |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{3} \cdot 13^{11} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1.787753753$ |
$1$ |
|
$2$ |
$241920$ |
$2.352661$ |
$-3360132358144/10315633419$ |
$1.01335$ |
$5.39910$ |
$[0, -1, 0, -334845, 187376409]$ |
\(y^2=x^3-x^2-334845x+187376409\) |
182.2.0.? |
$[(360, 10647)]$ |
14196.f1 |
14196c2 |
14196.f |
14196c |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{9} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$13.16203781$ |
$1$ |
|
$1$ |
$165888$ |
$2.217754$ |
$511268777852836624/113468578083$ |
$1.03581$ |
$5.64975$ |
$[0, -1, 0, -1375092, 620988120]$ |
\(y^2=x^3-x^2-1375092x+620988120\) |
2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? |
$[(25496869/6, 128744705285/6)]$ |
14196.f2 |
14196c1 |
14196.f |
14196c |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{18} \cdot 7^{4} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$6.581018905$ |
$1$ |
|
$3$ |
$82944$ |
$1.871180$ |
$2757231177908224/930196594089$ |
$1.08644$ |
$4.81349$ |
$[0, -1, 0, -95697, 7390278]$ |
\(y^2=x^3-x^2-95697x+7390278\) |
2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? |
$[(708246, 596040606)]$ |
14196.g1 |
14196b2 |
14196.g |
14196b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 7 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$48384$ |
$1.434387$ |
$49081386832/819$ |
$0.89138$ |
$4.76446$ |
$[0, -1, 0, -81852, 9040680]$ |
\(y^2=x^3-x^2-81852x+9040680\) |
2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 1092.12.0.? |
$[ ]$ |
14196.g2 |
14196b1 |
14196.g |
14196b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3 \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$24192$ |
$1.087812$ |
$-174456832/24843$ |
$0.92716$ |
$3.90760$ |
$[0, -1, 0, -4957, 151618]$ |
\(y^2=x^3-x^2-4957x+151618\) |
2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? |
$[ ]$ |
14196.h1 |
14196q1 |
14196.h |
14196q |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{6} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$4368$ |
$96$ |
$3$ |
$3.749663161$ |
$1$ |
|
$3$ |
$1797120$ |
$3.116127$ |
$416013434950254592/771895089$ |
$1.18442$ |
$6.94787$ |
$[0, 1, 0, -86098965, -307528130376]$ |
\(y^2=x^3+x^2-86098965x-307528130376\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ |
$[(21012, 2675946)]$ |
14196.h2 |
14196q2 |
14196.h |
14196q |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{12} \cdot 13^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$4368$ |
$96$ |
$3$ |
$7.499326322$ |
$1$ |
|
$1$ |
$3594240$ |
$3.462700$ |
$-25203028990703632/1121144263281$ |
$1.02481$ |
$6.95236$ |
$[0, 1, 0, -85209180, -314194399596]$ |
\(y^2=x^3+x^2-85209180x-314194399596\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.1, 52.12.0.l.1, $\ldots$ |
$[(84021/2, 21413049/2)]$ |
14196.i1 |
14196k1 |
14196.i |
14196k |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 7 \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$37440$ |
$1.412567$ |
$8192/63$ |
$0.85500$ |
$4.19941$ |
$[0, 1, 0, 5859, 607023]$ |
\(y^2=x^3+x^2+5859x+607023\) |
182.2.0.? |
$[ ]$ |
14196.j1 |
14196m1 |
14196.j |
14196m |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$56$ |
$4$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$89856$ |
$1.908142$ |
$2530736/321489$ |
$0.95836$ |
$4.83182$ |
$[0, 1, 0, 16844, -12432172]$ |
\(y^2=x^3+x^2+16844x-12432172\) |
4.2.0.a.1, 56.4.0-4.a.1.1 |
$[ ]$ |
14196.k1 |
14196j1 |
14196.k |
14196j |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$2184$ |
$48$ |
$1$ |
$1$ |
$1$ |
|
$1$ |
$59904$ |
$1.556200$ |
$16384000/3969$ |
$0.98951$ |
$4.44203$ |
$[0, 1, 0, -29293, 1461656]$ |
\(y^2=x^3+x^2-29293x+1461656\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bv.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ |
$[ ]$ |
14196.k2 |
14196j2 |
14196.k |
14196j |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 7^{4} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$2184$ |
$48$ |
$1$ |
$1$ |
$4$ |
$2$ |
$1$ |
$119808$ |
$1.902773$ |
$13718000/21609$ |
$0.87926$ |
$4.77029$ |
$[0, 1, 0, 69572, 9291764]$ |
\(y^2=x^3+x^2+69572x+9291764\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bs.1, 52.12.0.l.1, 56.12.0.bs.1, $\ldots$ |
$[ ]$ |
14196.l1 |
14196h4 |
14196.l |
14196h |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{2} \cdot 7^{3} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1092$ |
$96$ |
$1$ |
$10.08762259$ |
$1$ |
|
$1$ |
$82944$ |
$1.697283$ |
$2640279346000/3087$ |
$1.02245$ |
$5.18128$ |
$[0, 1, 0, -308988, -66212028]$ |
\(y^2=x^3+x^2-308988x-66212028\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.j.1, 28.6.0.a.1, $\ldots$ |
$[(208477/18, 7797491/18)]$ |
14196.l2 |
14196h3 |
14196.l |
14196h |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3 \cdot 7^{6} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1092$ |
$96$ |
$1$ |
$5.043811296$ |
$1$ |
|
$1$ |
$41472$ |
$1.350710$ |
$-10061824000/352947$ |
$1.07286$ |
$4.31486$ |
$[0, 1, 0, -19153, -1057120]$ |
\(y^2=x^3+x^2-19153x-1057120\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0.b.1, 28.6.0.b.1, 39.8.0-3.a.1.2, $\ldots$ |
$[(1693/2, 65403/2)]$ |
14196.l3 |
14196h2 |
14196.l |
14196h |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{6} \cdot 7 \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1092$ |
$96$ |
$1$ |
$3.362540864$ |
$1$ |
|
$3$ |
$27648$ |
$1.147978$ |
$9826000/5103$ |
$0.97243$ |
$3.87371$ |
$[0, 1, 0, -4788, -42444]$ |
\(y^2=x^3+x^2-4788x-42444\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.j.1, 28.6.0.a.1, $\ldots$ |
$[(-21, 222)]$ |
14196.l4 |
14196h1 |
14196.l |
14196h |
$4$ |
$6$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{3} \cdot 7^{2} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
2.3.0.1, 3.4.0.1 |
2B, 3B |
$1092$ |
$96$ |
$1$ |
$1.681270432$ |
$1$ |
|
$3$ |
$13824$ |
$0.801404$ |
$2048000/1323$ |
$1.10843$ |
$3.41969$ |
$[0, 1, 0, 1127, -4588]$ |
\(y^2=x^3+x^2+1127x-4588\) |
2.3.0.a.1, 3.4.0.a.1, 6.24.0.b.1, 28.6.0.b.1, 39.8.0-3.a.1.1, $\ldots$ |
$[(368, 7098)]$ |
14196.m1 |
14196o1 |
14196.m |
14196o |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 7^{2} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$2184$ |
$48$ |
$1$ |
$0.296699130$ |
$1$ |
|
$9$ |
$4608$ |
$0.273726$ |
$16384000/3969$ |
$0.98951$ |
$2.83235$ |
$[0, 1, 0, -173, 612]$ |
\(y^2=x^3+x^2-173x+612\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bv.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ |
$[(1, 21)]$ |
14196.m2 |
14196o2 |
14196.m |
14196o |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 7^{4} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.4 |
2B |
$2184$ |
$48$ |
$1$ |
$0.593398261$ |
$1$ |
|
$9$ |
$9216$ |
$0.620299$ |
$13718000/21609$ |
$0.87926$ |
$3.16061$ |
$[0, 1, 0, 412, 4356]$ |
\(y^2=x^3+x^2+412x+4356\) |
2.3.0.a.1, 4.6.0.e.1, 24.12.0.bs.1, 52.12.0.l.1, 56.12.0.bs.1, $\ldots$ |
$[(4, 78)]$ |
14196.n1 |
14196i1 |
14196.n |
14196i |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{8} \cdot 7^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.2.0.1 |
|
$728$ |
$4$ |
$0$ |
$0.205044669$ |
$1$ |
|
$8$ |
$6912$ |
$0.625668$ |
$2530736/321489$ |
$0.95836$ |
$3.22214$ |
$[0, 1, 0, 100, -5628]$ |
\(y^2=x^3+x^2+100x-5628\) |
4.2.0.a.1, 728.4.0.? |
$[(52, 378)]$ |
14196.o1 |
14196p1 |
14196.o |
14196p |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 7 \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$182$ |
$2$ |
$0$ |
$0.362115582$ |
$1$ |
|
$4$ |
$2880$ |
$0.130093$ |
$8192/63$ |
$0.85500$ |
$2.58973$ |
$[0, 1, 0, 35, 287]$ |
\(y^2=x^3+x^2+35x+287\) |
182.2.0.? |
$[(17, 78)]$ |
14196.p1 |
14196n2 |
14196.p |
14196n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{8} \cdot 3^{10} \cdot 7 \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$80640$ |
$1.753794$ |
$28556329552/5373459$ |
$0.89289$ |
$4.70781$ |
$[0, 1, 0, -68332, 5625140]$ |
\(y^2=x^3+x^2-68332x+5625140\) |
2.3.0.a.1, 12.6.0.c.1, 364.6.0.?, 1092.12.0.? |
$[ ]$ |
14196.p2 |
14196n1 |
14196.p |
14196n |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{4} \cdot 3^{5} \cdot 7^{2} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1092$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$40320$ |
$1.407221$ |
$899022848/2012283$ |
$0.98933$ |
$4.16628$ |
$[0, 1, 0, 8563, 519312]$ |
\(y^2=x^3+x^2+8563x+519312\) |
2.3.0.a.1, 6.6.0.a.1, 364.6.0.?, 1092.12.0.? |
$[ ]$ |
14196.q1 |
14196l1 |
14196.q |
14196l |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 7^{6} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.31 |
2B |
$4368$ |
$96$ |
$3$ |
$1$ |
$1$ |
|
$1$ |
$138240$ |
$1.833651$ |
$416013434950254592/771895089$ |
$1.18442$ |
$5.33819$ |
$[0, 1, 0, -509461, -140133148]$ |
\(y^2=x^3+x^2-509461x-140133148\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.v.1, 26.6.0.b.1, 28.12.0.m.1, $\ldots$ |
$[ ]$ |
14196.q2 |
14196l2 |
14196.q |
14196l |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 7 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 7^{12} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.29 |
2B |
$4368$ |
$96$ |
$3$ |
$1$ |
$4$ |
$2$ |
$1$ |
$276480$ |
$2.180225$ |
$-25203028990703632/1121144263281$ |
$1.02481$ |
$5.34268$ |
$[0, 1, 0, -504196, -143165788]$ |
\(y^2=x^3+x^2-504196x-143165788\) |
2.3.0.a.1, 4.6.0.e.1, 8.12.0.s.1, 48.24.0.l.1, 52.12.0.l.1, $\ldots$ |
$[ ]$ |