Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 85 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
139425.a1 139425.a \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -30835458, 98023114568]$ \(y^2+y=x^3-x^2-30835458x+98023114568\) 5.12.0.a.1, 65.24.0-5.a.1.2, 110.24.0.?, 1430.48.1.? $[ ]$
139425.a2 139425.a \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -626708, -668871682]$ \(y^2+y=x^3-x^2-626708x-668871682\) 5.12.0.a.2, 65.24.0-5.a.2.2, 110.24.0.?, 1430.48.1.? $[ ]$
139425.b1 139425.b \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.407520435$ $[0, 1, 1, 40842, -121156]$ \(y^2+y=x^3+x^2+40842x-121156\) 1430.2.0.? $[(303, 6337), (693, 19012)]$
139425.c1 139425.c \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.119966768$ $[0, 1, 1, 421092, 395465594]$ \(y^2+y=x^3+x^2+421092x+395465594\) 6.2.0.a.1 $[(3197/2, 282071/2)]$
139425.d1 139425.d \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.147929359$ $[1, 1, 1, -701438, 581592656]$ \(y^2+xy+y=x^3+x^2-701438x+581592656\) 660.2.0.? $[(5930, 449797)]$
139425.e1 139425.e \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.499229670$ $[1, 1, 1, -97263, 3781656]$ \(y^2+xy+y=x^3+x^2-97263x+3781656\) 330.2.0.? $[(-90, 3482)]$
139425.f1 139425.f \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -29000488, 60099209906]$ \(y^2+xy+y=x^3+x^2-29000488x+60099209906\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 48.24.0.g.1, 80.24.0.?, $\ldots$ $[ ]$
139425.f2 139425.f \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -12713113, -16900020844]$ \(y^2+xy+y=x^3+x^2-12713113x-16900020844\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0.h.1, 24.24.0.bl.1, $\ldots$ $[ ]$
139425.f3 139425.f \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2002738, 729256406]$ \(y^2+xy+y=x^3+x^2-2002738x+729256406\) 2.6.0.a.1, 4.12.0.b.1, 12.24.0.c.1, 40.24.0-4.b.1.2, 88.24.0.?, $\ldots$ $[ ]$
139425.f4 139425.f \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -1812613, 938393906]$ \(y^2+xy+y=x^3+x^2-1812613x+938393906\) 2.6.0.a.1, 4.12.0.b.1, 24.24.0.m.1, 40.24.0-4.b.1.3, 88.24.0.?, $\ldots$ $[ ]$
139425.f5 139425.f \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -101488, 17808656]$ \(y^2+xy+y=x^3+x^2-101488x+17808656\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 40.24.0-8.n.1.8, 48.24.0.g.1, $\ldots$ $[ ]$
139425.f6 139425.f \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 5665637, 4977536156]$ \(y^2+xy+y=x^3+x^2+5665637x+4977536156\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0.n.1, 12.12.0.g.1, $\ldots$ $[ ]$
139425.g1 139425.g \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $1.384432759$ $[1, 1, 1, -14388, 661656]$ \(y^2+xy+y=x^3+x^2-14388x+661656\) 6.2.0.a.1 $[(60, 107), (71, 30)]$
139425.h1 139425.h \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1373213, 600605156]$ \(y^2+xy+y=x^3+x^2-1373213x+600605156\) 2.3.0.a.1, 4.6.0.c.1, 120.12.0.?, 220.12.0.?, 260.12.0.?, $\ldots$ $[ ]$
139425.h2 139425.h \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -211338, -24483594]$ \(y^2+xy+y=x^3+x^2-211338x-24483594\) 2.6.0.a.1, 60.12.0-2.a.1.1, 132.12.0.?, 156.12.0.?, 220.12.0.?, $\ldots$ $[ ]$
139425.h3 139425.h \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -190213, -32004094]$ \(y^2+xy+y=x^3+x^2-190213x-32004094\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.2, 264.12.0.?, 312.12.0.?, $\ldots$ $[ ]$
139425.h4 139425.h \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 612537, -167837844]$ \(y^2+xy+y=x^3+x^2+612537x-167837844\) 2.3.0.a.1, 4.6.0.c.1, 60.12.0-4.c.1.1, 78.6.0.?, 156.12.0.?, $\ldots$ $[ ]$
139425.i1 139425.i \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $34.26679449$ $[1, 1, 1, -1949440438, -33130174013344]$ \(y^2+xy+y=x^3+x^2-1949440438x-33130174013344\) 2.3.0.a.1, 156.6.0.?, 660.6.0.?, 2860.6.0.?, 8580.12.0.? $[(14893973237483485/393507, 1573386730172140873106906/393507)]$
139425.i2 139425.i \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\Z/2\Z$ $17.13339724$ $[1, 1, 1, -121811063, -517955445844]$ \(y^2+xy+y=x^3+x^2-121811063x-517955445844\) 2.3.0.a.1, 78.6.0.?, 660.6.0.?, 2860.6.0.?, 8580.12.0.? $[(744869560/207, 14274474522956/207)]$
139425.j1 139425.j \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.288009232$ $[1, 0, 0, -1821063, -1056000258]$ \(y^2+xy=x^3-1821063x-1056000258\) 7.8.0.a.1, 35.16.0-7.a.1.2, 91.24.0.?, 455.48.0.?, 660.2.0.?, $\ldots$ $[(6657, 527559)]$
139425.j2 139425.j \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.016064626$ $[1, 0, 0, -25438, 2256617]$ \(y^2+xy=x^3-25438x+2256617\) 7.8.0.a.1, 35.16.0-7.a.1.1, 91.24.0.?, 455.48.0.?, 660.2.0.?, $\ldots$ $[(157, 1384)]$
139425.k1 139425.k \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.053544785$ $[1, 0, 0, -23, 12]$ \(y^2+xy=x^3-23x+12\) 330.2.0.? $[(-3, 9)]$
139425.l1 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -888703991588, -322446285080189583]$ \(y^2+xy=x^3-888703991588x-322446285080189583\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 32.48.0-16.g.1.7, $\ldots$ $[ ]$
139425.l2 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -59096194713, -4357233994580208]$ \(y^2+xy=x^3-59096194713x-4357233994580208\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0-8.i.1.2, 40.48.0.bd.2, $\ldots$ $[ ]$
139425.l3 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -19156741588, 961542917529167]$ \(y^2+xy=x^3-19156741588x+961542917529167\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0-4.b.1.6, 40.96.0-40.c.1.13, 80.192.2.?, $\ldots$ $[ ]$
139425.l4 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 0, -18847450463, 995920316781792]$ \(y^2+xy=x^3-18847450463x+995920316781792\) 2.6.0.a.1, 4.24.0-4.b.1.2, 8.48.0-8.i.1.7, 40.96.0-40.bd.1.10, 80.192.2.?, $\ldots$ $[ ]$
139425.l5 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/4\Z$ $1$ $[1, 0, 0, -18847429338, 995922660959667]$ \(y^2+xy=x^3-18847429338x+995922660959667\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.12, 16.48.0-16.g.1.15, 40.48.0-40.cb.2.10, $\ldots$ $[ ]$
139425.l6 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -18538497338, 1030147688734917]$ \(y^2+xy=x^3-18538497338x+1030147688734917\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.10, 16.48.0-16.g.1.11, 40.48.0-40.cb.2.14, $\ldots$ $[ ]$
139425.l7 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 15834053537, 4080167514635042]$ \(y^2+xy=x^3+15834053537x+4080167514635042\) 2.3.0.a.1, 4.12.0.d.1, 8.24.0.q.1, 16.48.0-8.q.1.2, 40.48.0-8.q.1.1, $\ldots$ $[ ]$
139425.l8 139425.l \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 131480352162, -26669745526158333]$ \(y^2+xy=x^3+131480352162x-26669745526158333\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 32.48.0-16.g.1.7, $\ldots$ $[ ]$
139425.m1 139425.m \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -55013, 3731142]$ \(y^2+xy=x^3-55013x+3731142\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
139425.m2 139425.m \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, 8362, 372267]$ \(y^2+xy=x^3+8362x+372267\) 2.3.0.a.1, 12.6.0.b.1, 286.6.0.?, 1716.12.0.? $[ ]$
139425.n1 139425.n \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.377021927$ $[1, 0, 0, -97263, 11726532]$ \(y^2+xy=x^3-97263x+11726532\) 6.2.0.a.1 $[(183, 162)]$
139425.o1 139425.o \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 0, -2513963, -829548708]$ \(y^2+xy=x^3-2513963x-829548708\) 330.2.0.? $[ ]$
139425.p1 139425.p \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.420112146$ $[1, 0, 0, -813316813, -8927377641508]$ \(y^2+xy=x^3-813316813x-8927377641508\) 7.8.0.a.1, 35.16.0-7.a.1.2, 91.24.0.?, 330.2.0.?, 455.48.0.?, $\ldots$ $[(-16453, 26789)]$
139425.p2 139425.p \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $16.94078502$ $[1, 0, 0, -15531188, 23555997867]$ \(y^2+xy=x^3-15531188x+23555997867\) 7.8.0.a.1, 35.16.0-7.a.1.1, 91.24.0.?, 330.2.0.?, 455.48.0.?, $\ldots$ $[(215635317/331, 862192478724/331)]$
139425.q1 139425.q \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 18820967, 34270860093]$ \(y^2+y=x^3-x^2+18820967x+34270860093\) 1430.2.0.? $[ ]$
139425.r1 139425.r \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -3943, 101298]$ \(y^2+y=x^3-x^2-3943x+101298\) 3.4.0.a.1, 6.8.0.b.1, 195.8.0.?, 390.16.0.? $[ ]$
139425.r2 139425.r \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 21407, 169743]$ \(y^2+y=x^3-x^2+21407x+169743\) 3.4.0.a.1, 6.8.0.b.1, 195.8.0.?, 390.16.0.? $[ ]$
139425.s1 139425.s \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.880937200$ $[0, -1, 1, 87, 548]$ \(y^2+y=x^3-x^2+87x+548\) 6.2.0.a.1 $[(37/2, 359/2)]$
139425.t1 139425.t \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.239548334$ $[0, -1, 1, -7323, 604073]$ \(y^2+y=x^3-x^2-7323x+604073\) 1430.2.0.? $[(113, 1098)]$
139425.u1 139425.u \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, 14647, 1263173]$ \(y^2+y=x^3-x^2+14647x+1263173\) 6.2.0.a.1 $[ ]$
139425.v1 139425.v \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.618642340$ $[0, -1, 1, -43, 288]$ \(y^2+y=x^3-x^2-43x+288\) 1430.2.0.? $[(22, 97), (-4, 19)]$
139425.w1 139425.w \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.138792702$ $[0, -1, 1, 111367, 15564668]$ \(y^2+y=x^3-x^2+111367x+15564668\) 1430.2.0.? $[(812, 25312)]$
139425.x1 139425.x \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.465582499$ $[0, 1, 1, -40733, 3150944]$ \(y^2+y=x^3+x^2-40733x+3150944\) 6.2.0.a.1 $[(124, 148), (118, 37)]$
139425.y1 139425.y \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.946649469$ $[0, 1, 1, -474515383, 3978383409394]$ \(y^2+y=x^3+x^2-474515383x+3978383409394\) 1430.2.0.? $[(12562, 3295)]$
139425.z1 139425.z \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $2$ $\mathsf{trivial}$ $0.660516149$ $[0, 1, 1, 2817, -7081]$ \(y^2+y=x^3+x^2+2817x-7081\) 6.2.0.a.1 $[(303, 5362), (17, 214)]$
139425.ba1 139425.ba \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -183083, 75142994]$ \(y^2+y=x^3+x^2-183083x+75142994\) 1430.2.0.? $[ ]$
139425.bb1 139425.bb \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $2.027077512$ $[0, 1, 1, 2167, 72869]$ \(y^2+y=x^3+x^2+2167x+72869\) 6.2.0.a.1 $[(247/3, 10574/3)]$
139425.bc1 139425.bc \( 3 \cdot 5^{2} \cdot 11 \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.033168654$ $[0, 1, 1, -1083, 33869]$ \(y^2+y=x^3+x^2-1083x+33869\) 1430.2.0.? $[(33, 187)]$
Next   displayed columns for results