Learn more

Refine search


Results (1-50 of 60 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
13800.a1 13800.a \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $0.145070348$ $[0, -1, 0, -5033, 139437]$ \(y^2=x^3-x^2-5033x+139437\) 230.2.0.? $[(37, 50), (-13, 450)]$
13800.b1 13800.b \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $2$ $\mathsf{trivial}$ $0.355097190$ $[0, -1, 0, -2968, 22012]$ \(y^2=x^3-x^2-2968x+22012\) 92.2.0.? $[(346, 6348), (-22, 276)]$
13800.c1 13800.c \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $2.508205192$ $[0, -1, 0, -833, -57963]$ \(y^2=x^3-x^2-833x-57963\) 6.2.0.a.1 $[(91, 782)]$
13800.d1 13800.d \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -488135208, -4063744743588]$ \(y^2=x^3-x^2-488135208x-4063744743588\) 92.2.0.? $[ ]$
13800.e1 13800.e \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -51208, -3671588]$ \(y^2=x^3-x^2-51208x-3671588\) 2.3.0.a.1, 60.6.0.c.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[ ]$
13800.e2 13800.e \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, 6292, -336588]$ \(y^2=x^3-x^2+6292x-336588\) 2.3.0.a.1, 30.6.0.a.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[ ]$
13800.f1 13800.f \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.679812769$ $[0, -1, 0, -248, 1212]$ \(y^2=x^3-x^2-248x+1212\) 92.2.0.? $[(26, 108)]$
13800.g1 13800.g \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -1028, -12348]$ \(y^2=x^3-x^2-1028x-12348\) 2.3.0.a.1, 20.6.0.b.1, 276.6.0.?, 690.6.0.?, 1380.12.0.? $[ ]$
13800.g2 13800.g \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -928, -14948]$ \(y^2=x^3-x^2-928x-14948\) 2.3.0.a.1, 20.6.0.a.1, 276.6.0.?, 1380.12.0.? $[ ]$
13800.h1 13800.h \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -54004408, -152735763188]$ \(y^2=x^3-x^2-54004408x-152735763188\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 20.12.0-4.c.1.1, 40.24.0-8.k.1.1, $\ldots$ $[ ]$
13800.h2 13800.h \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -5242408, 537944812]$ \(y^2=x^3-x^2-5242408x+537944812\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 40.24.0-8.p.1.4, 184.24.0.?, $\ldots$ $[ ]$
13800.h3 13800.h \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -3379408, -2379513188]$ \(y^2=x^3-x^2-3379408x-2379513188\) 2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 40.24.0-8.a.1.2, 92.12.0.?, $\ldots$ $[ ]$
13800.h4 13800.h \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -98908, -76602188]$ \(y^2=x^3-x^2-98908x-76602188\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 20.12.0-4.c.1.2, 40.24.0-8.p.1.1, $\ldots$ $[ ]$
13800.i1 13800.i \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -12968008, 17978836012]$ \(y^2=x^3-x^2-12968008x+17978836012\) 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.? $[ ]$
13800.i2 13800.i \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -801008, 288018012]$ \(y^2=x^3-x^2-801008x+288018012\) 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.? $[ ]$
13800.j1 13800.j \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $1.506489089$ $[0, -1, 0, 190367, 140529637]$ \(y^2=x^3-x^2+190367x+140529637\) 230.2.0.? $[(37, 12150)]$
13800.k1 13800.k \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 0, -5208, -153588]$ \(y^2=x^3-x^2-5208x-153588\) 552.2.0.? $[ ]$
13800.l1 13800.l \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -73608, 7711212]$ \(y^2=x^3-x^2-73608x+7711212\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.y.1, 40.12.0-4.c.1.5, 120.24.0.?, $\ldots$ $[ ]$
13800.l2 13800.l \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -7608, -52788]$ \(y^2=x^3-x^2-7608x-52788\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0.s.1, 120.24.0.?, $\ldots$ $[ ]$
13800.l3 13800.l \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[0, -1, 0, -4608, 121212]$ \(y^2=x^3-x^2-4608x+121212\) 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0.b.1, 92.12.0.?, 120.24.0.?, $\ldots$ $[ ]$
13800.l4 13800.l \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, -1, 0, -108, 4212]$ \(y^2=x^3-x^2-108x+4212\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 24.12.0.y.1, 46.6.0.a.1, $\ldots$ $[ ]$
13800.m1 13800.m \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $4.055603101$ $[0, 1, 0, -21408, 1094688]$ \(y^2=x^3+x^2-21408x+1094688\) 2.3.0.a.1, 60.6.0.c.1, 184.6.0.?, 2760.12.0.? $[(117/2, 5625/2)]$
13800.m2 13800.m \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.027801550$ $[0, 1, 0, 1592, 82688]$ \(y^2=x^3+x^2+1592x+82688\) 2.3.0.a.1, 30.6.0.a.1, 184.6.0.?, 2760.12.0.? $[(328, 6000)]$
13800.n1 13800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/4\Z$ $2.779025845$ $[0, 1, 0, -61408, 5836688]$ \(y^2=x^3+x^2-61408x+5836688\) 2.3.0.a.1, 4.12.0-4.c.1.1, 120.24.0.?, 460.24.0.?, 552.24.0.?, $\ldots$ $[(-97, 3300)]$
13800.n2 13800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.389512922$ $[0, 1, 0, -3908, 86688]$ \(y^2=x^3+x^2-3908x+86688\) 2.6.0.a.1, 4.12.0-2.a.1.1, 60.24.0-60.b.1.4, 276.24.0.?, 460.24.0.?, $\ldots$ $[(18, 150)]$
13800.n3 13800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.779025845$ $[0, 1, 0, -783, -7062]$ \(y^2=x^3+x^2-783x-7062\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 60.12.0-4.c.1.2, 120.24.0.?, $\ldots$ $[(-13, 33)]$
13800.n4 13800.n \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.779025845$ $[0, 1, 0, 3592, 386688]$ \(y^2=x^3+x^2+3592x+386688\) 2.3.0.a.1, 4.12.0-4.c.1.2, 30.6.0.a.1, 60.24.0-60.g.1.1, 552.24.0.?, $\ldots$ $[(168, 2400)]$
13800.o1 13800.o \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.114430467$ $[0, 1, 0, -7033, -6776437]$ \(y^2=x^3+x^2-7033x-6776437\) 230.2.0.? $[(1103, 36450)]$
13800.p1 13800.p \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 0, -208, -1312]$ \(y^2=x^3+x^2-208x-1312\) 552.2.0.? $[ ]$
13800.q1 13800.q \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -24008, -1186512]$ \(y^2=x^3+x^2-24008x-1186512\) 2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? $[ ]$
13800.q2 13800.q \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, 2992, -106512]$ \(y^2=x^3+x^2+2992x-106512\) 2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? $[ ]$
13800.r1 13800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -28608, -1871712]$ \(y^2=x^3+x^2-28608x-1871712\) 2.3.0.a.1, 24.6.0.a.1, 92.6.0.?, 552.12.0.? $[ ]$
13800.r2 13800.r \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $0$ $\Z/2\Z$ $1$ $[0, 1, 0, -1608, -35712]$ \(y^2=x^3+x^2-1608x-35712\) 2.3.0.a.1, 24.6.0.d.1, 46.6.0.a.1, 552.12.0.? $[ ]$
13800.s1 13800.s \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.410694525$ $[0, 1, 0, -1408, -19312]$ \(y^2=x^3+x^2-1408x-19312\) 2.3.0.a.1, 12.6.0.a.1, 92.6.0.?, 276.12.0.? $[(64, 396)]$
13800.s2 13800.s \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.705347262$ $[0, 1, 0, 92, -1312]$ \(y^2=x^3+x^2+92x-1312\) 2.3.0.a.1, 12.6.0.b.1, 46.6.0.a.1, 276.12.0.? $[(14, 54)]$
13800.t1 13800.t \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.917710543$ $[0, 1, 0, 367, 15363]$ \(y^2=x^3+x^2+367x+15363\) 230.2.0.? $[(13, 150)]$
13800.u1 13800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.373441685$ $[0, 1, 0, -21772008, -37732906512]$ \(y^2=x^3+x^2-21772008x-37732906512\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.r.1, 20.12.0-4.c.1.1, 24.48.0.bf.1, $\ldots$ $[(5367, 6348)]$
13800.u2 13800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.686720842$ $[0, 1, 0, -3547008, 1778893488]$ \(y^2=x^3+x^2-3547008x+1778893488\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.c.1, 20.24.0-4.b.1.1, 24.48.0.d.1, $\ldots$ $[(-372, 55200)]$
13800.u3 13800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.373441685$ $[0, 1, 0, -3234508, 2237643488]$ \(y^2=x^3+x^2-3234508x+2237643488\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.h.1, 20.24.0-4.b.1.3, 24.48.0.x.1, $\ldots$ $[(803, 12600)]$
13800.u4 13800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $1.686720842$ $[0, 1, 0, -3234383, 2237825238]$ \(y^2=x^3+x^2-3234383x+2237825238\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.h.1, 20.12.0-4.c.1.2, $\ldots$ $[(793, 13125)]$
13800.u5 13800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $6.746883371$ $[0, 1, 0, -2924008, 2684763488]$ \(y^2=x^3+x^2-2924008x+2684763488\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.h.1, 20.12.0-4.c.1.2, $\ldots$ $[(1079, 28056)]$
13800.u6 13800.u \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $3.373441685$ $[0, 1, 0, 9677992, 11935693488]$ \(y^2=x^3+x^2+9677992x+11935693488\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.k.1, 20.12.0-4.c.1.1, 40.48.0-8.k.1.4, $\ldots$ $[(2503, 227700)]$
13800.v1 13800.v \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $5.090375791$ $[0, 1, 0, -25708, -1594912]$ \(y^2=x^3+x^2-25708x-1594912\) 2.3.0.a.1, 20.6.0.b.1, 276.6.0.?, 690.6.0.?, 1380.12.0.? $[(232, 2232)]$
13800.v2 13800.v \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.545187895$ $[0, 1, 0, -23208, -1914912]$ \(y^2=x^3+x^2-23208x-1914912\) 2.3.0.a.1, 20.6.0.a.1, 276.6.0.?, 1380.12.0.? $[(308, 4500)]$
13800.w1 13800.w \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $2.311459114$ $[0, 1, 0, -26408, 1616688]$ \(y^2=x^3+x^2-26408x+1616688\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$ $[(43, 750)]$
13800.w2 13800.w \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $4.622918229$ $[0, 1, 0, -3408, -39312]$ \(y^2=x^3+x^2-3408x-39312\) 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 184.12.0.?, $\ldots$ $[(3188, 180000)]$
13800.w3 13800.w \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $9.245836459$ $[0, 1, 0, -2908, -61312]$ \(y^2=x^3+x^2-2908x-61312\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$ $[(19936/5, 2810016/5)]$
13800.w4 13800.w \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $9.245836459$ $[0, 1, 0, 11592, -279312]$ \(y^2=x^3+x^2+11592x-279312\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ $[(50993/4, 11523375/4)]$
13800.x1 13800.x \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\mathsf{trivial}$ $0.242924774$ $[0, 1, 0, -6208, 139088]$ \(y^2=x^3+x^2-6208x+139088\) 92.2.0.? $[(8, 300)]$
13800.y1 13800.y \( 2^{3} \cdot 3 \cdot 5^{2} \cdot 23 \) $1$ $\Z/2\Z$ $0.817436752$ $[0, 1, 0, -2048, -30192]$ \(y^2=x^3+x^2-2048x-30192\) 2.3.0.a.1, 60.6.0.c.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[(-32, 60)]$
Next   displayed columns for results