Learn more

Refine search


Results (26 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
1365.a1 1365.a \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -136675, -19504018]$ \(y^2+xy+y=x^3+x^2-136675x-19504018\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 120.48.0.?, 140.24.0.?, $\ldots$ $[ ]$
1365.a2 1365.a \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, -46850, 3883592]$ \(y^2+xy+y=x^3+x^2-46850x+3883592\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 120.48.0.?, 156.24.0.?, $\ldots$ $[ ]$
1365.a3 1365.a \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -9100, -265708]$ \(y^2+xy+y=x^3+x^2-9100x-265708\) 2.6.0.a.1, 4.24.0-4.b.1.1, 120.48.0.?, 140.48.0.?, 168.48.0.?, $\ldots$ $[ ]$
1365.a4 1365.a \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/4\Z$ $1$ $[1, 1, 1, -2975, 57692]$ \(y^2+xy+y=x^3+x^2-2975x+57692\) 2.6.0.a.1, 4.24.0-4.b.1.3, 120.48.0.?, 156.48.0.?, 168.48.0.?, $\ldots$ $[ ]$
1365.a5 1365.a \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 1, 1, 150, 3942]$ \(y^2+xy+y=x^3+x^2+150x+3942\) 2.3.0.a.1, 4.12.0-4.c.1.1, 8.24.0-8.n.1.2, 78.6.0.?, 156.24.0.?, $\ldots$ $[ ]$
1365.a6 1365.a \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 20475, -1602498]$ \(y^2+xy+y=x^3+x^2+20475x-1602498\) 2.3.0.a.1, 4.12.0-4.c.1.2, 8.24.0-8.n.1.6, 70.6.0.a.1, 140.24.0.?, $\ldots$ $[ ]$
1365.b1 1365.b \( 3 \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.131585550$ $[1, 0, 0, -24161, 1442310]$ \(y^2+xy=x^3-24161x+1442310\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 52.12.0-4.c.1.2, 120.12.0.?, $\ldots$ $[(73, 226)]$
1365.b2 1365.b \( 3 \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $0.263171101$ $[1, 0, 0, -1866, 10971]$ \(y^2+xy=x^3-1866x+10971\) 2.6.0.a.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 60.12.0-2.a.1.1, 364.24.0.?, $\ldots$ $[(3, 72)]$
1365.b3 1365.b \( 3 \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.526342202$ $[1, 0, 0, -1021, -12520]$ \(y^2+xy=x^3-1021x-12520\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 60.12.0-4.c.1.2, 104.12.0.?, $\ldots$ $[(-19, 20)]$
1365.b4 1365.b \( 3 \cdot 5 \cdot 7 \cdot 13 \) $1$ $\Z/2\Z$ $0.526342202$ $[1, 0, 0, 6909, 86436]$ \(y^2+xy=x^3+6909x+86436\) 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.1, 56.12.0-4.c.1.5, 60.12.0-4.c.1.1, $\ldots$ $[(0, 294)]$
1365.c1 1365.c \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -16873, 836602]$ \(y^2+xy=x^3+x^2-16873x+836602\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 52.12.0-4.c.1.2, 156.24.0.?, $\ldots$ $[ ]$
1365.c2 1365.c \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 0, -1078, 12103]$ \(y^2+xy=x^3+x^2-1078x+12103\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.12.0.?, 156.24.0.?, $\ldots$ $[ ]$
1365.c3 1365.c \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -233, -1248]$ \(y^2+xy=x^3+x^2-233x-1248\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 104.12.0.?, 140.12.0.?, $\ldots$ $[ ]$
1365.c4 1365.c \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, 1197, 58968]$ \(y^2+xy=x^3+x^2+1197x+58968\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 52.12.0-4.c.1.1, 140.12.0.?, $\ldots$ $[ ]$
1365.d1 1365.d \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -4369, -111499]$ \(y^2+xy+y=x^3-4369x-111499\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0-4.c.1.5, 52.12.0-4.c.1.1, $\ldots$ $[ ]$
1365.d2 1365.d \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -274, -1753]$ \(y^2+xy+y=x^3-274x-1753\) 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.24.0.?, $\ldots$ $[ ]$
1365.d3 1365.d \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -99, -3923]$ \(y^2+xy+y=x^3-99x-3923\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.1, 70.6.0.a.1, $\ldots$ $[ ]$
1365.d4 1365.d \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -29, 11]$ \(y^2+xy+y=x^3-29x+11\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 52.12.0-4.c.1.2, 56.12.0-4.c.1.5, $\ldots$ $[ ]$
1365.e1 1365.e \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -564, 5101]$ \(y^2+xy+y=x^3-564x+5101\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 104.12.0.?, 140.12.0.?, $\ldots$ $[ ]$
1365.e2 1365.e \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -234, -1343]$ \(y^2+xy+y=x^3-234x-1343\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 52.12.0-4.c.1.1, 156.24.0.?, $\ldots$ $[ ]$
1365.e3 1365.e \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -39, 61]$ \(y^2+xy+y=x^3-39x+61\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.12.0.?, 156.24.0.?, $\ldots$ $[ ]$
1365.e4 1365.e \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 6, 7]$ \(y^2+xy+y=x^3+6x+7\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 52.12.0-4.c.1.2, 140.12.0.?, $\ldots$ $[ ]$
1365.f1 1365.f \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/4\Z$ $1$ $[1, 0, 1, -603, 5023]$ \(y^2+xy+y=x^3-603x+5023\) 2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.8, 364.24.0.?, 2184.48.0.? $[ ]$
1365.f2 1365.f \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 0, 1, -148, -619]$ \(y^2+xy+y=x^3-148x-619\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.2, 364.24.0.?, 1092.48.0.? $[ ]$
1365.f3 1365.f \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -143, -667]$ \(y^2+xy+y=x^3-143x-667\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 12.12.0-4.c.1.2, 24.24.0-24.z.1.4, $\ldots$ $[ ]$
1365.f4 1365.f \( 3 \cdot 5 \cdot 7 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 227, -3169]$ \(y^2+xy+y=x^3+227x-3169\) 2.3.0.a.1, 4.12.0-4.c.1.2, 6.6.0.a.1, 12.24.0-12.g.1.1, 728.24.0.?, $\ldots$ $[ ]$
  displayed columns for results