Learn more

Refine search


Results (24 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
12996.a1 12996.a \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $0.233482257$ $[0, 0, 0, -12312, 525825]$ \(y^2=x^3-12312x+525825\) 4.4.0.a.1, 5.5.0.a.1, 6.2.0.a.1, 12.8.0.c.1, 20.20.1.c.1, $\ldots$ $[(66, 27)]$
12996.b1 12996.b \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -4444632, -3606633675]$ \(y^2=x^3-4444632x-3606633675\) 4.4.0.a.1, 5.5.0.a.1, 6.2.0.a.1, 12.8.0.c.1, 20.20.1.c.1, $\ldots$ $[ ]$
12996.c1 12996.c \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -299991, 60976510]$ \(y^2=x^3-299991x+60976510\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 228.12.0.? $[ ]$
12996.c2 12996.c \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 8664, 3504949]$ \(y^2=x^3+8664x+3504949\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? $[ ]$
12996.d1 12996.d \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-12$ $2.290307121$ $[0, 0, 0, -48735, 4074246]$ \(y^2=x^3-48735x+4074246\) $[(87, 702)]$
12996.d2 12996.d \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-12$ $6.870921363$ $[0, 0, 0, -5415, -150898]$ \(y^2=x^3-5415x-150898\) $[(-2294/7, 468/7)]$
12996.d3 12996.d \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-3$ $3.435460681$ $[0, 0, 0, 0, -6859]$ \(y^2=x^3-6859\) $[(475/3, 10108/3)]$
12996.d4 12996.d \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\Z/2\Z$ $-3$ $1.145153560$ $[0, 0, 0, 0, 185193]$ \(y^2=x^3+185193\) $[(-38, 361)]$
12996.e1 12996.e \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 0, 0, -3518667]$ \(y^2=x^3-3518667\) $[ ]$
12996.e2 12996.e \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 0, 0, 130321]$ \(y^2=x^3+130321\) $[ ]$
12996.f1 12996.f \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.625412405$ $[0, 0, 0, 0, -19]$ \(y^2=x^3-19\) $[(7, 18)]$
12996.f2 12996.f \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $0.541804135$ $[0, 0, 0, 0, 513]$ \(y^2=x^3+513\) $[(6, 27)]$
12996.g1 12996.g \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $13.07949166$ $[0, 0, 0, 0, -2476099]$ \(y^2=x^3-2476099\) $[(825595/7, 750154068/7)]$
12996.g2 12996.g \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $-3$ $4.359830555$ $[0, 0, 0, 0, 66854673]$ \(y^2=x^3+66854673\) $[(42, 8181)]$
12996.h1 12996.h \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 0, 0, -9747]$ \(y^2=x^3-9747\) $[ ]$
12996.h2 12996.h \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\Z/3\Z$ $-3$ $1$ $[0, 0, 0, 0, 361]$ \(y^2=x^3+361\) $[ ]$
12996.i1 12996.i \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -69312, -7051052]$ \(y^2=x^3-69312x-7051052\) 38.2.0.a.1 $[ ]$
12996.j1 12996.j \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.305924817$ $[0, 0, 0, -20577, -912247]$ \(y^2=x^3-20577x-912247\) 2.2.0.a.1, 5.5.0.a.1, 10.10.0.a.1, 12.4.0-2.a.1.1, 38.6.0.a.1, $\ldots$ $[(-67, 407)]$
12996.k1 12996.k \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -57, 133]$ \(y^2=x^3-57x+133\) 2.2.0.a.1, 5.5.0.a.1, 10.10.0.a.1, 38.6.0.a.1, 190.30.2.?, $\ldots$ $[ ]$
12996.l1 12996.l \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $1.327575377$ $[0, 0, 0, -912, 18772]$ \(y^2=x^3-912x+18772\) 4.4.0.a.1, 38.2.0.a.1, 76.8.0.? $[(-19, 171)]$
12996.m1 12996.m \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $4.744426944$ $[0, 0, 0, -329232, -128757148]$ \(y^2=x^3-329232x-128757148\) 4.4.0.a.1, 38.2.0.a.1, 76.8.0.? $[(53428/7, 9753498/7)]$
12996.n1 12996.n \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 8664, 1838212]$ \(y^2=x^3+8664x+1838212\) 38.2.0.a.1 $[ ]$
12996.o1 12996.o \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $1$ $\mathsf{trivial}$ $7.353497057$ $[0, 0, 0, -1368, -19475]$ \(y^2=x^3-1368x-19475\) 4.4.0.a.1, 5.5.0.a.1, 6.2.0.a.1, 12.8.0.c.1, 20.20.1.c.1, $\ldots$ $[(2171/5, 89844/5)]$
12996.p1 12996.p \( 2^{2} \cdot 3^{2} \cdot 19^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -493848, 133579025]$ \(y^2=x^3-493848x+133579025\) 4.4.0.a.1, 5.5.0.a.1, 6.2.0.a.1, 12.8.0.c.1, 20.20.1.c.1, $\ldots$ $[ ]$
  displayed columns for results