Learn more

Refine search


Results (1-50 of 87 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
128700.a1 128700.a \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -44625, -3776875]$ \(y^2=x^3-44625x-3776875\) 286.2.0.? $[ ]$
128700.b1 128700.b \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -51375, 2443750]$ \(y^2=x^3-51375x+2443750\) 2.3.0.a.1, 220.6.0.?, 780.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
128700.b2 128700.b \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, 10500, 278125]$ \(y^2=x^3+10500x+278125\) 2.3.0.a.1, 220.6.0.?, 390.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
128700.c1 128700.c \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1275, -48175]$ \(y^2=x^3+1275x-48175\) 286.2.0.? $[ ]$
128700.d1 128700.d \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.545265653$ $[0, 0, 0, -705, 7265]$ \(y^2=x^3-705x+7265\) 286.2.0.? $[(19, 27), (1, 81)]$
128700.e1 128700.e \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 31875, -47134375]$ \(y^2=x^3+31875x-47134375\) 286.2.0.? $[ ]$
128700.f1 128700.f \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.515866204$ $[0, 0, 0, -143625, 45948125]$ \(y^2=x^3-143625x+45948125\) 286.2.0.? $[(484, 9477)]$
128700.g1 128700.g \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.857416504$ $[0, 0, 0, -14003625, -25043819375]$ \(y^2=x^3-14003625x-25043819375\) 286.2.0.? $[(7925, 601425)]$
128700.h1 128700.h \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.129486315$ $[0, 0, 0, 304875, 31843125]$ \(y^2=x^3+304875x+31843125\) 286.2.0.? $[(900, 32175), (471, 16731)]$
128700.i1 128700.i \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $4.772210699$ $[0, 0, 0, -553125, -158346875]$ \(y^2=x^3-553125x-158346875\) 286.2.0.? $[(1259, 33777)]$
128700.j1 128700.j \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.222923053$ $[0, 0, 0, -1335, -87410]$ \(y^2=x^3-1335x-87410\) 132.2.0.? $[(191, 2574)]$
128700.k1 128700.k \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -46266375, -120545581250]$ \(y^2=x^3-46266375x-120545581250\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.e.1, 220.12.0.? $[ ]$
128700.k2 128700.k \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -46204500, -120885584375]$ \(y^2=x^3-46204500x-120885584375\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.e.1, 220.12.0.? $[ ]$
128700.l1 128700.l \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $8.931039714$ $[0, 0, 0, -375600, 90600500]$ \(y^2=x^3-375600x+90600500\) 3.4.0.a.1, 15.8.0-3.a.1.2, 22.2.0.a.1, 66.8.0.a.1, 330.16.0.? $[(247709/31, 98405827/31)]$
128700.l2 128700.l \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $2.977013238$ $[0, 0, 0, 20400, 510500]$ \(y^2=x^3+20400x+510500\) 3.4.0.a.1, 15.8.0-3.a.1.1, 22.2.0.a.1, 66.8.0.a.1, 330.16.0.? $[(44, 1222)]$
128700.m1 128700.m \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -342255, 75981350]$ \(y^2=x^3-342255x+75981350\) 2.3.0.a.1, 20.6.0.c.1, 44.6.0.e.1, 220.12.0.? $[ ]$
128700.m2 128700.m \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -42780, -1582675]$ \(y^2=x^3-42780x-1582675\) 2.3.0.a.1, 10.6.0.a.1, 44.6.0.e.1, 220.12.0.? $[ ]$
128700.n1 128700.n \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.914794684$ $[0, 0, 0, -1200, 15460]$ \(y^2=x^3-1200x+15460\) 26.2.0.a.1 $[(24, 22)]$
128700.o1 128700.o \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 69000, 11612500]$ \(y^2=x^3+69000x+11612500\) 1430.2.0.? $[ ]$
128700.p1 128700.p \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -400800, -97769500]$ \(y^2=x^3-400800x-97769500\) 3.4.0.a.1, 15.8.0-3.a.1.1, 858.8.0.?, 1430.2.0.?, 4290.16.0.? $[ ]$
128700.p2 128700.p \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 535200, -453215500]$ \(y^2=x^3+535200x-453215500\) 3.4.0.a.1, 15.8.0-3.a.1.2, 858.8.0.?, 1430.2.0.?, 4290.16.0.? $[ ]$
128700.q1 128700.q \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.336107960$ $[0, 0, 0, -2109000, 1178862500]$ \(y^2=x^3-2109000x+1178862500\) 1430.2.0.? $[(700, 6750)]$
128700.r1 128700.r \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1727304375, 27629557442750]$ \(y^2=x^3-1727304375x+27629557442750\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 15.8.0-3.a.1.2, $\ldots$ $[ ]$
128700.r2 128700.r \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1727274000, 27630577830125]$ \(y^2=x^3-1727274000x+27630577830125\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 15.8.0-3.a.1.2, $\ldots$ $[ ]$
128700.r3 128700.r \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -43557375, -53419788250]$ \(y^2=x^3-43557375x-53419788250\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.h.1, 15.8.0-3.a.1.1, $\ldots$ $[ ]$
128700.r4 128700.r \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -21414000, 37567339625]$ \(y^2=x^3-21414000x+37567339625\) 2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 12.24.0.i.1, 15.8.0-3.a.1.1, $\ldots$ $[ ]$
128700.s1 128700.s \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -98400, -11358700]$ \(y^2=x^3-98400x-11358700\) 26.2.0.a.1 $[ ]$
128700.t1 128700.t \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $0.231919376$ $[0, 0, 0, -225, 2025]$ \(y^2=x^3-225x+2025\) 286.2.0.? $[(15, 45), (-15, 45)]$
128700.u1 128700.u \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 4644195, -3853310515]$ \(y^2=x^3+4644195x-3853310515\) 286.2.0.? $[ ]$
128700.v1 128700.v \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $1.946909648$ $[0, 0, 0, -1363125, 615405625]$ \(y^2=x^3-1363125x+615405625\) 286.2.0.? $[(800, 6075)]$
128700.w1 128700.w \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\Z/3\Z$ $0.600111361$ $[0, 0, 0, -38325, 2963725]$ \(y^2=x^3-38325x+2963725\) 3.8.0-3.a.1.2, 286.2.0.?, 858.16.0.? $[(101, 351), (119, 297)]$
128700.w2 128700.w \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $2$ $\mathsf{trivial}$ $5.401002253$ $[0, 0, 0, 2175, 15325]$ \(y^2=x^3+2175x+15325\) 3.8.0-3.a.1.1, 286.2.0.?, 858.16.0.? $[(164, 2187), (89/2, 2187/2)]$
128700.x1 128700.x \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $0.184244098$ $[0, 0, 0, -14925, 701885]$ \(y^2=x^3-14925x+701885\) 286.2.0.? $[(49, 297)]$
128700.y1 128700.y \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -294375, -243621250]$ \(y^2=x^3-294375x-243621250\) 132.2.0.? $[ ]$
128700.z1 128700.z \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\mathsf{trivial}$ $4.349112935$ $[0, 0, 0, -34200, -2551500]$ \(y^2=x^3-34200x-2551500\) 1430.2.0.? $[(1305/2, 36675/2)]$
128700.ba1 128700.ba \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -106500, 13278125]$ \(y^2=x^3-106500x+13278125\) 2.3.0.a.1, 260.6.0.?, 330.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
128700.ba2 128700.ba \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -33375, 31193750]$ \(y^2=x^3-33375x+31193750\) 2.3.0.a.1, 260.6.0.?, 660.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
128700.bb1 128700.bb \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3975, 64750]$ \(y^2=x^3-3975x+64750\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[ ]$
128700.bb2 128700.bb \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -3600, 83125]$ \(y^2=x^3-3600x+83125\) 2.3.0.a.1, 12.6.0.b.1, 572.6.0.?, 858.6.0.?, 1716.12.0.? $[ ]$
128700.bc1 128700.bc \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.463983722$ $[0, 0, 0, -4260, 106225]$ \(y^2=x^3-4260x+106225\) 2.3.0.a.1, 260.6.0.?, 330.6.0.?, 1716.6.0.?, 8580.12.0.? $[(50, 135)]$
128700.bc2 128700.bc \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $0.927967444$ $[0, 0, 0, -1335, 249550]$ \(y^2=x^3-1335x+249550\) 2.3.0.a.1, 260.6.0.?, 660.6.0.?, 1716.6.0.?, 8580.12.0.? $[(95, 990)]$
128700.bd1 128700.bd \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -12010225800, 506624320730500]$ \(y^2=x^3-12010225800x+506624320730500\) 1430.2.0.? $[ ]$
128700.be1 128700.be \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.396828335$ $[0, 0, 0, -35775, -1748250]$ \(y^2=x^3-35775x-1748250\) 2.3.0.a.1, 12.6.0.a.1, 572.6.0.?, 1716.12.0.? $[(-65, 550)]$
128700.be2 128700.be \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $2.793656671$ $[0, 0, 0, -32400, -2244375]$ \(y^2=x^3-32400x-2244375\) 2.3.0.a.1, 12.6.0.b.1, 572.6.0.?, 858.6.0.?, 1716.12.0.? $[(-104, 19)]$
128700.bf1 128700.bf \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $1.947720920$ $[0, 0, 0, -43663260, 111050968525]$ \(y^2=x^3-43663260x+111050968525\) 2.3.0.a.1, 260.6.0.?, 330.6.0.?, 1716.6.0.?, 8580.12.0.? $[(4775, 106920)]$
128700.bf2 128700.bf \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $1$ $\Z/2\Z$ $3.895441841$ $[0, 0, 0, -43660335, 111066590950]$ \(y^2=x^3-43660335x+111066590950\) 2.3.0.a.1, 260.6.0.?, 660.6.0.?, 1716.6.0.?, 8580.12.0.? $[(2930, 91080)]$
128700.bg1 128700.bg \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1091581500, 13881371065625]$ \(y^2=x^3-1091581500x+13881371065625\) 2.3.0.a.1, 260.6.0.?, 330.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
128700.bg2 128700.bg \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\Z/2\Z$ $1$ $[0, 0, 0, -1091508375, 13883323868750]$ \(y^2=x^3-1091508375x+13883323868750\) 2.3.0.a.1, 260.6.0.?, 660.6.0.?, 1716.6.0.?, 8580.12.0.? $[ ]$
128700.bh1 128700.bh \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 116104875, -481663814375]$ \(y^2=x^3+116104875x-481663814375\) 286.2.0.? $[ ]$
128700.bi1 128700.bi \( 2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11 \cdot 13 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -5625, 253125]$ \(y^2=x^3-5625x+253125\) 286.2.0.? $[ ]$
Next   displayed columns for results