Learn more

Refine search


Results (1-50 of 141 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
124215.a1 124215.a \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -549306, 246356606]$ \(y^2+y=x^3-x^2-549306x+246356606\) 390.2.0.? $[ ]$
124215.b1 124215.b \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $7.276842577$ $[0, -1, 1, -12308326, 16702740732]$ \(y^2+y=x^3-x^2-12308326x+16702740732\) 390.2.0.? $[(48853/6, 10793753/6)]$
124215.c1 124215.c \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, -1, 1, -1486, -22254]$ \(y^2+y=x^3-x^2-1486x-22254\) 6.2.0.a.1 $[ ]$
124215.d1 124215.d \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.171647797$ $[0, -1, 1, 210180, 52112738]$ \(y^2+y=x^3-x^2+210180x+52112738\) 70.2.0.a.1 $[(789, 26617)]$
124215.e1 124215.e \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.710268377$ $[0, -1, 1, -30, -232]$ \(y^2+y=x^3-x^2-30x-232\) 70.2.0.a.1 $[(12, 31)]$
124215.f1 124215.f \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.780842673$ $[0, -1, 1, -2760, 510278]$ \(y^2+y=x^3-x^2-2760x+510278\) 390.2.0.? $[(-82, 422)]$
124215.g1 124215.g \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $9.045875102$ $[0, 1, 1, 10298804, -17895266840]$ \(y^2+y=x^3+x^2+10298804x-17895266840\) 70.2.0.a.1 $[(329585/4, 191308561/4)]$
124215.h1 124215.h \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.792234166$ $[0, 1, 1, -1486, 82450]$ \(y^2+y=x^3+x^2-1486x+82450\) 70.2.0.a.1 $[(65, 514)]$
124215.i1 124215.i \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -251190, -48767806]$ \(y^2+y=x^3+x^2-251190x-48767806\) 390.2.0.? $[ ]$
124215.j1 124215.j \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -1576150, -782613464]$ \(y^2+y=x^3+x^2-1576150x-782613464\) 390.2.0.? $[ ]$
124215.k1 124215.k \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 1, 1, -2760, -75526]$ \(y^2+y=x^3+x^2-2760x-75526\) 70.2.0.a.1 $[ ]$
124215.l1 124215.l \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -36175721, 83732819204]$ \(y^2+xy+y=x^3+x^2-36175721x+83732819204\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 40.12.0-4.c.1.3, 52.12.0-4.c.1.2, $\ldots$ $[ ]$
124215.l2 124215.l \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -2265026, 1302701798]$ \(y^2+xy+y=x^3+x^2-2265026x+1302701798\) 2.6.0.a.1, 20.12.0-2.a.1.2, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.24.0.?, $\ldots$ $[ ]$
124215.l3 124215.l \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -815851, 2949544268]$ \(y^2+xy+y=x^3+x^2-815851x+2949544268\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.3, 52.12.0-4.c.1.1, 56.12.0-4.c.1.5, $\ldots$ $[ ]$
124215.l4 124215.l \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -236181, -10366686]$ \(y^2+xy+y=x^3+x^2-236181x-10366686\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0-4.c.1.3, 104.12.0.?, $\ldots$ $[ ]$
124215.m1 124215.m \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -4666516, -3881485756]$ \(y^2+xy+y=x^3+x^2-4666516x-3881485756\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 120.12.0.?, 210.6.0.?, $\ldots$ $[ ]$
124215.m2 124215.m \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -1933786, 996387608]$ \(y^2+xy+y=x^3+x^2-1933786x+996387608\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 120.12.0.?, 156.12.0.?, $\ldots$ $[ ]$
124215.m3 124215.m \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z\oplus\Z/2\Z$ $1$ $[1, 1, 1, -318991, -48707716]$ \(y^2+xy+y=x^3+x^2-318991x-48707716\) 2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0-2.a.1.2, 156.12.0.?, 260.12.0.?, $\ldots$ $[ ]$
124215.m4 124215.m \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 53654, -5033722]$ \(y^2+xy+y=x^3+x^2+53654x-5033722\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 120.12.0.?, 260.12.0.?, $\ldots$ $[ ]$
124215.n1 124215.n \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $2.140515308$ $[1, 1, 1, -38711, -1830886]$ \(y^2+xy+y=x^3+x^2-38711x-1830886\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[(-57, 469)]$
124215.n2 124215.n \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.070257654$ $[1, 1, 1, -16416, 782088]$ \(y^2+xy+y=x^3+x^2-16416x+782088\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[(-8, 959)]$
124215.o1 124215.o \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -82391, -9136366]$ \(y^2+xy+y=x^3+x^2-82391x-9136366\) 2.3.0.a.1, 364.6.0.?, 420.6.0.?, 780.6.0.?, 5460.12.0.? $[ ]$
124215.o2 124215.o \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -5496, -124272]$ \(y^2+xy+y=x^3+x^2-5496x-124272\) 2.3.0.a.1, 210.6.0.?, 364.6.0.?, 780.6.0.?, 5460.12.0.? $[ ]$
124215.p1 124215.p \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -7316, 636488]$ \(y^2+xy+y=x^3+x^2-7316x+636488\) 6.2.0.a.1, 7.8.0.a.1, 42.16.0.a.1, 91.48.0.?, 546.96.2.? $[ ]$
124215.p2 124215.p \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -491, -4516]$ \(y^2+xy+y=x^3+x^2-491x-4516\) 6.2.0.a.1, 7.8.0.a.1, 42.16.0.a.1, 91.48.0.?, 546.96.2.? $[ ]$
124215.q1 124215.q \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -11655680, 2285590250]$ \(y^2+xy+y=x^3+x^2-11655680x+2285590250\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? $[ ]$
124215.q2 124215.q \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, 2877475, 285828122]$ \(y^2+xy+y=x^3+x^2+2877475x+285828122\) 2.3.0.a.1, 156.6.0.?, 420.6.0.?, 910.6.0.?, 5460.12.0.? $[ ]$
124215.r1 124215.r \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.166409043$ $[1, 1, 1, -4989475, -3825290890]$ \(y^2+xy+y=x^3+x^2-4989475x-3825290890\) 2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.z.1.1, 364.24.0.?, 2184.48.0.? $[(-1217, 21733)]$
124215.r2 124215.r \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.332818086$ $[1, 1, 1, -1221620, 456499532]$ \(y^2+xy+y=x^3+x^2-1221620x+456499532\) 2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.3, 364.24.0.?, 1092.48.0.? $[(27, 20566)]$
124215.r3 124215.r \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/4\Z$ $4.665636172$ $[1, 1, 1, -1180215, 493002180]$ \(y^2+xy+y=x^3+x^2-1180215x+493002180\) 2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.9, 546.6.0.?, 728.24.0.?, $\ldots$ $[(693, 2573)]$
124215.r4 124215.r \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.665636172$ $[1, 1, 1, 1883755, 2402948582]$ \(y^2+xy+y=x^3+x^2+1883755x+2402948582\) 2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.5, 12.12.0.g.1, $\ldots$ $[(6023/2, 738283/2)]$
124215.s1 124215.s \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -9672435900, 366133159764042]$ \(y^2+xy+y=x^3+x^2-9672435900x+366133159764042\) 2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
124215.s2 124215.s \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -625816045, 5296061579570]$ \(y^2+xy+y=x^3+x^2-625816045x+5296061579570\) 2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? $[ ]$
124215.t1 124215.t \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.123336969$ $[1, 1, 1, -931785, 345782562]$ \(y^2+xy+y=x^3+x^2-931785x+345782562\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 42.6.0.a.1, 84.12.0.?, $\ldots$ $[(552, -399)]$
124215.t2 124215.t \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.246673938$ $[1, 1, 1, -62280, 4588800]$ \(y^2+xy+y=x^3+x^2-62280x+4588800\) 2.6.0.a.1, 20.12.0.a.1, 84.12.0.?, 156.12.0.?, 364.12.0.?, $\ldots$ $[(70, 725)]$
124215.t3 124215.t \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.493347877$ $[1, 1, 1, -20875, -1108528]$ \(y^2+xy+y=x^3+x^2-20875x-1108528\) 2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 156.12.0.?, 168.12.0.?, $\ldots$ $[(-90, 271)]$
124215.t4 124215.t \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $4.493347877$ $[1, 1, 1, 144745, 28852130]$ \(y^2+xy+y=x^3+x^2+144745x+28852130\) 2.3.0.a.1, 4.6.0.c.1, 20.12.0.h.1, 168.12.0.?, 312.12.0.?, $\ldots$ $[(3255, 185455)]$
124215.u1 124215.u \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -84575, -9501640]$ \(y^2+xy+y=x^3+x^2-84575x-9501640\) 2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.? $[ ]$
124215.u2 124215.u \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 1, 1, -4950, -169590]$ \(y^2+xy+y=x^3+x^2-4950x-169590\) 2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.? $[ ]$
124215.v1 124215.v \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -2220, -41280]$ \(y^2+xy+y=x^3+x^2-2220x-41280\) 390.2.0.? $[ ]$
124215.w1 124215.w \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $4.202741525$ $[1, 0, 0, -29156, -14617695]$ \(y^2+xy=x^3-29156x-14617695\) 420.2.0.? $[(291, 1104)]$
124215.x1 124215.x \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $3.786234868$ $[1, 0, 0, -16416, 2810625]$ \(y^2+xy=x^3-16416x+2810625\) 420.2.0.? $[(221, 3050)]$
124215.y1 124215.y \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.137824447$ $[1, 0, 0, -139729626, -635748677019]$ \(y^2+xy=x^3-139729626x-635748677019\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 120.12.0.?, 156.12.0.?, $\ldots$ $[(-27261/2, 41211/2)]$
124215.y2 124215.y \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.568912223$ $[1, 0, 0, -8931231, -9459802080]$ \(y^2+xy=x^3-8931231x-9459802080\) 2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0-2.a.1.2, 156.12.0.?, 260.12.0.?, $\ldots$ $[(-1872, 27396)]$
124215.y3 124215.y \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $1.284456111$ $[1, 0, 0, -1933786, 867027251]$ \(y^2+xy=x^3-1933786x+867027251\) 2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 120.12.0.?, 210.6.0.?, $\ldots$ $[(1145, 11849)]$
124215.y4 124215.y \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\Z/2\Z$ $5.137824447$ $[1, 0, 0, 9908044, -44060014545]$ \(y^2+xy=x^3+9908044x-44060014545\) 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 120.12.0.?, 260.12.0.?, $\ldots$ $[(65251/2, 16826975/2)]$
124215.z1 124215.z \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $0.287612837$ $[1, 0, 0, -108781, 13832636]$ \(y^2+xy=x^3-108781x+13832636\) 390.2.0.? $[(53, 2840)]$
124215.ba1 124215.ba \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -4037160, 3121661997]$ \(y^2+xy=x^3-4037160x+3121661997\) 2.3.0.a.1, 364.6.0.?, 420.6.0.?, 780.6.0.?, 5460.12.0.? $[ ]$
124215.ba2 124215.ba \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $0$ $\Z/2\Z$ $1$ $[1, 0, 0, -269305, 41817320]$ \(y^2+xy=x^3-269305x+41817320\) 2.3.0.a.1, 210.6.0.?, 364.6.0.?, 780.6.0.?, 5460.12.0.? $[ ]$
124215.bb1 124215.bb \( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) $1$ $\mathsf{trivial}$ $1.684537980$ $[1, 0, 0, -358485, -219390900]$ \(y^2+xy=x^3-358485x-219390900\) 6.2.0.a.1, 7.8.0.a.1, 42.16.0.a.1, 91.48.0.?, 546.96.2.? $[(16255/3, 1889680/3)]$
Next   displayed columns for results