Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
124215.a1 |
124215o1 |
124215.a |
124215o |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{7} \cdot 7^{6} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5334336$ |
$2.380283$ |
$-32278933504/27421875$ |
$0.96372$ |
$4.44734$ |
$[0, -1, 1, -549306, 246356606]$ |
\(y^2+y=x^3-x^2-549306x+246356606\) |
390.2.0.? |
$[ ]$ |
124215.b1 |
124215v1 |
124215.b |
124215v |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{3} \cdot 7^{10} \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$7.276842577$ |
$1$ |
|
$0$ |
$11085984$ |
$2.883022$ |
$-68841472/375$ |
$1.29339$ |
$5.16637$ |
$[0, -1, 1, -12308326, 16702740732]$ |
\(y^2+y=x^3-x^2-12308326x+16702740732\) |
390.2.0.? |
$[(48853/6, 10793753/6)]$ |
124215.c1 |
124215n1 |
124215.c |
124215n |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$134784$ |
$0.714256$ |
$-18264064/675$ |
$0.88749$ |
$2.86346$ |
$[0, -1, 1, -1486, -22254]$ |
\(y^2+y=x^3-x^2-1486x-22254\) |
6.2.0.a.1 |
$[ ]$ |
124215.d1 |
124215bj1 |
124215.d |
124215bj |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{4} \cdot 5^{7} \cdot 7^{3} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.171647797$ |
$1$ |
|
$8$ |
$2795520$ |
$2.186413$ |
$3669905408/6328125$ |
$0.95132$ |
$4.18283$ |
$[0, -1, 1, 210180, 52112738]$ |
\(y^2+y=x^3-x^2+210180x+52112738\) |
70.2.0.a.1 |
$[(789, 26617)]$ |
124215.e1 |
124215bi1 |
124215.e |
124215bi |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{4} \cdot 5 \cdot 7^{3} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.710268377$ |
$1$ |
|
$6$ |
$52224$ |
$0.097269$ |
$-53248/405$ |
$0.80624$ |
$2.08867$ |
$[0, -1, 1, -30, -232]$ |
\(y^2+y=x^3-x^2-30x-232\) |
70.2.0.a.1 |
$[(12, 31)]$ |
124215.f1 |
124215bk1 |
124215.f |
124215bk |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5 \cdot 7^{6} \cdot 13^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1.780842673$ |
$1$ |
|
$2$ |
$665280$ |
$1.374846$ |
$-4096/195$ |
$0.83662$ |
$3.39350$ |
$[0, -1, 1, -2760, 510278]$ |
\(y^2+y=x^3-x^2-2760x+510278\) |
390.2.0.? |
$[(-82, 422)]$ |
124215.g1 |
124215ci1 |
124215.g |
124215ci |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{4} \cdot 5^{7} \cdot 7^{9} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$9.045875102$ |
$1$ |
|
$0$ |
$19568640$ |
$3.159367$ |
$3669905408/6328125$ |
$0.95132$ |
$5.17820$ |
$[0, 1, 1, 10298804, -17895266840]$ |
\(y^2+y=x^3+x^2+10298804x-17895266840\) |
70.2.0.a.1 |
$[(329585/4, 191308561/4)]$ |
124215.h1 |
124215ch1 |
124215.h |
124215ch |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{4} \cdot 5 \cdot 7^{9} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$0.792234166$ |
$1$ |
|
$4$ |
$365568$ |
$1.070225$ |
$-53248/405$ |
$0.80624$ |
$3.08404$ |
$[0, 1, 1, -1486, 82450]$ |
\(y^2+y=x^3+x^2-1486x+82450\) |
70.2.0.a.1 |
$[(65, 514)]$ |
124215.i1 |
124215cq1 |
124215.i |
124215cq |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{3} \cdot 7^{4} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1583712$ |
$1.910069$ |
$-68841472/375$ |
$1.29339$ |
$4.17100$ |
$[0, 1, 1, -251190, -48767806]$ |
\(y^2+y=x^3+x^2-251190x-48767806\) |
390.2.0.? |
$[ ]$ |
124215.j1 |
124215db1 |
124215.j |
124215db |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 5 \cdot 7^{6} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4656960$ |
$2.447998$ |
$-762549907456/24024195$ |
$0.97132$ |
$4.64443$ |
$[0, 1, 1, -1576150, -782613464]$ |
\(y^2+y=x^3+x^2-1576150x-782613464\) |
390.2.0.? |
$[ ]$ |
124215.k1 |
124215dc1 |
124215.k |
124215dc |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{2} \cdot 5 \cdot 7^{7} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$70$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$359424$ |
$1.013887$ |
$-692224/315$ |
$0.76822$ |
$3.06597$ |
$[0, 1, 1, -2760, -75526]$ |
\(y^2+y=x^3+x^2-2760x-75526\) |
70.2.0.a.1 |
$[ ]$ |
124215.l1 |
124215k4 |
124215.l |
124215k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{4} \cdot 7^{7} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8257536$ |
$2.818909$ |
$9219915604149769/511875$ |
$0.95368$ |
$5.44131$ |
$[1, 1, 1, -36175721, 83732819204]$ |
\(y^2+xy+y=x^3+x^2-36175721x+83732819204\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 40.12.0-4.c.1.3, 52.12.0-4.c.1.2, $\ldots$ |
$[ ]$ |
124215.l2 |
124215k2 |
124215.l |
124215k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{4} \cdot 5^{2} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$1820$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$4128768$ |
$2.472336$ |
$2263054145689/16769025$ |
$0.89990$ |
$4.73265$ |
$[1, 1, 1, -2265026, 1302701798]$ |
\(y^2+xy+y=x^3+x^2-2265026x+1302701798\) |
2.6.0.a.1, 20.12.0-2.a.1.2, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.24.0.?, $\ldots$ |
$[ ]$ |
124215.l3 |
124215k3 |
124215.l |
124215k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{8} \cdot 5 \cdot 7^{7} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$8257536$ |
$2.818909$ |
$-105756712489/6558605235$ |
$0.95735$ |
$4.87079$ |
$[1, 1, 1, -815851, 2949544268]$ |
\(y^2+xy+y=x^3+x^2-815851x+2949544268\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0-4.c.1.3, 52.12.0-4.c.1.1, 56.12.0-4.c.1.5, $\ldots$ |
$[ ]$ |
124215.l4 |
124215k1 |
124215.l |
124215k |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5 \cdot 7^{10} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$2064384$ |
$2.125763$ |
$2565726409/1404585$ |
$1.03680$ |
$4.15444$ |
$[1, 1, 1, -236181, -10366686]$ |
\(y^2+xy+y=x^3+x^2-236181x-10366686\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0-4.c.1.3, 104.12.0.?, $\ldots$ |
$[ ]$ |
124215.m1 |
124215h4 |
124215.m |
124215h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5 \cdot 7^{7} \cdot 13^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$3096576$ |
$2.510929$ |
$19790357598649/2998905$ |
$0.91596$ |
$4.91752$ |
$[1, 1, 1, -4666516, -3881485756]$ |
\(y^2+xy+y=x^3+x^2-4666516x-3881485756\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 120.12.0.?, 210.6.0.?, $\ldots$ |
$[ ]$ |
124215.m2 |
124215h3 |
124215.m |
124215h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5^{4} \cdot 7^{10} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3096576$ |
$2.510929$ |
$1408317602329/58524375$ |
$0.89699$ |
$4.69221$ |
$[1, 1, 1, -1933786, 996387608]$ |
\(y^2+xy+y=x^3+x^2-1933786x+996387608\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 120.12.0.?, 156.12.0.?, $\ldots$ |
$[ ]$ |
124215.m3 |
124215h2 |
124215.m |
124215h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{8} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5460$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$1548288$ |
$2.164356$ |
$6321363049/1863225$ |
$0.99851$ |
$4.23132$ |
$[1, 1, 1, -318991, -48707716]$ |
\(y^2+xy+y=x^3+x^2-318991x-48707716\) |
2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0-2.a.1.2, 156.12.0.?, 260.12.0.?, $\ldots$ |
$[ ]$ |
124215.m4 |
124215h1 |
124215.m |
124215h |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{4} \cdot 5 \cdot 7^{7} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$774144$ |
$1.817781$ |
$30080231/36855$ |
$0.80519$ |
$3.78484$ |
$[1, 1, 1, 53654, -5033722]$ |
\(y^2+xy+y=x^3+x^2+53654x-5033722\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 120.12.0.?, 260.12.0.?, $\ldots$ |
$[ ]$ |
124215.n1 |
124215u2 |
124215.n |
124215u |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{4} \cdot 5^{6} \cdot 7^{7} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$2.140515308$ |
$1$ |
|
$4$ |
$552960$ |
$1.648203$ |
$24820429213/8859375$ |
$0.91720$ |
$3.69191$ |
$[1, 1, 1, -38711, -1830886]$ |
\(y^2+xy+y=x^3+x^2-38711x-1830886\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(-57, 469)]$ |
124215.n2 |
124215u1 |
124215.n |
124215u |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{3} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1.070257654$ |
$1$ |
|
$7$ |
$276480$ |
$1.301630$ |
$1892819053/55125$ |
$0.87529$ |
$3.47250$ |
$[1, 1, 1, -16416, 782088]$ |
\(y^2+xy+y=x^3+x^2-16416x+782088\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[(-8, 959)]$ |
124215.o1 |
124215i2 |
124215.o |
124215i |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{3} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$473088$ |
$1.481161$ |
$37360194607/2925$ |
$0.89415$ |
$3.88510$ |
$[1, 1, 1, -82391, -9136366]$ |
\(y^2+xy+y=x^3+x^2-82391x-9136366\) |
2.3.0.a.1, 364.6.0.?, 420.6.0.?, 780.6.0.?, 5460.12.0.? |
$[ ]$ |
124215.o2 |
124215i1 |
124215.o |
124215i |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5 \cdot 7^{3} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$236544$ |
$1.134586$ |
$11089567/2535$ |
$0.80282$ |
$3.19264$ |
$[1, 1, 1, -5496, -124272]$ |
\(y^2+xy+y=x^3+x^2-5496x-124272\) |
2.3.0.a.1, 210.6.0.?, 364.6.0.?, 780.6.0.?, 5460.12.0.? |
$[ ]$ |
124215.p1 |
124215j2 |
124215.p |
124215j |
$2$ |
$7$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{14} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$546$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$366912$ |
$1.407026$ |
$-5229566958889/18310546875$ |
$0.98267$ |
$3.43230$ |
$[1, 1, 1, -7316, 636488]$ |
\(y^2+xy+y=x^3+x^2-7316x+636488\) |
6.2.0.a.1, 7.8.0.a.1, 42.16.0.a.1, 91.48.0.?, 546.96.2.? |
$[ ]$ |
124215.p2 |
124215j1 |
124215.p |
124215j |
$2$ |
$7$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{7} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$546$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$52416$ |
$0.434071$ |
$-1581032089/54675$ |
$0.95921$ |
$2.57985$ |
$[1, 1, 1, -491, -4516]$ |
\(y^2+xy+y=x^3+x^2-491x-4516\) |
6.2.0.a.1, 7.8.0.a.1, 42.16.0.a.1, 91.48.0.?, 546.96.2.? |
$[ ]$ |
124215.q1 |
124215bq2 |
124215.q |
124215bq |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{3} \cdot 5^{2} \cdot 7^{12} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$15095808$ |
$3.102493$ |
$140364780373/79413075$ |
$0.98271$ |
$5.15164$ |
$[1, 1, 1, -11655680, 2285590250]$ |
\(y^2+xy+y=x^3+x^2-11655680x+2285590250\) |
2.3.0.a.1, 156.6.0.?, 420.6.0.?, 1820.6.0.?, 5460.12.0.? |
$[ ]$ |
124215.q2 |
124215bq1 |
124215.q |
124215bq |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{6} \cdot 5 \cdot 7^{9} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$7547904$ |
$2.755920$ |
$2111932187/1250235$ |
$0.94958$ |
$4.79386$ |
$[1, 1, 1, 2877475, 285828122]$ |
\(y^2+xy+y=x^3+x^2+2877475x+285828122\) |
2.3.0.a.1, 156.6.0.?, 420.6.0.?, 910.6.0.?, 5460.12.0.? |
$[ ]$ |
124215.r1 |
124215bf4 |
124215.r |
124215bf |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{4} \cdot 5^{8} \cdot 7^{7} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$1.166409043$ |
$1$ |
|
$4$ |
$6193152$ |
$2.801552$ |
$24190225473961/2879296875$ |
$0.92052$ |
$4.93463$ |
$[1, 1, 1, -4989475, -3825290890]$ |
\(y^2+xy+y=x^3+x^2-4989475x-3825290890\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 24.24.0-24.z.1.1, 364.24.0.?, 2184.48.0.? |
$[(-1217, 21733)]$ |
124215.r2 |
124215bf2 |
124215.r |
124215bf |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{4} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$1092$ |
$48$ |
$0$ |
$2.332818086$ |
$1$ |
|
$6$ |
$3096576$ |
$2.454979$ |
$355045312441/46580625$ |
$0.88810$ |
$4.57474$ |
$[1, 1, 1, -1221620, 456499532]$ |
\(y^2+xy+y=x^3+x^2-1221620x+456499532\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 12.24.0-12.b.1.3, 364.24.0.?, 1092.48.0.? |
$[(27, 20566)]$ |
124215.r3 |
124215bf1 |
124215.r |
124215bf |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5^{2} \cdot 7^{7} \cdot 13^{7} \) |
$1$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$4.665636172$ |
$1$ |
|
$7$ |
$1548288$ |
$2.108406$ |
$320153881321/6825$ |
$0.88340$ |
$4.56592$ |
$[1, 1, 1, -1180215, 493002180]$ |
\(y^2+xy+y=x^3+x^2-1180215x+493002180\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 24.24.0-24.z.1.9, 546.6.0.?, 728.24.0.?, $\ldots$ |
$[(693, 2573)]$ |
124215.r4 |
124215bf3 |
124215.r |
124215bf |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{2} \cdot 7^{10} \cdot 13^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$2184$ |
$48$ |
$0$ |
$4.665636172$ |
$1$ |
|
$0$ |
$6193152$ |
$2.801552$ |
$1301812981559/5143122075$ |
$0.93061$ |
$4.83577$ |
$[1, 1, 1, 1883755, 2402948582]$ |
\(y^2+xy+y=x^3+x^2+1883755x+2402948582\) |
2.3.0.a.1, 4.6.0.c.1, 6.6.0.a.1, 8.12.0-4.c.1.5, 12.12.0.g.1, $\ldots$ |
$[(6023/2, 738283/2)]$ |
124215.s1 |
124215bo2 |
124215.s |
124215bo |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{8} \cdot 5^{6} \cdot 7^{11} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$129392640$ |
$4.361458$ |
$80214500261567905813/1722980109375$ |
$1.09150$ |
$6.87066$ |
$[1, 1, 1, -9672435900, 366133159764042]$ |
\(y^2+xy+y=x^3+x^2-9672435900x+366133159764042\) |
2.3.0.a.1, 140.6.0.?, 260.6.0.?, 364.6.0.?, 1820.12.0.? |
$[ ]$ |
124215.s2 |
124215bo1 |
124215.s |
124215bo |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{4} \cdot 5^{3} \cdot 7^{16} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$1820$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64696320$ |
$4.014885$ |
$21726280496903653/2860061896125$ |
$1.07432$ |
$6.17039$ |
$[1, 1, 1, -625816045, 5296061579570]$ |
\(y^2+xy+y=x^3+x^2-625816045x+5296061579570\) |
2.3.0.a.1, 130.6.0.?, 140.6.0.?, 364.6.0.?, 1820.12.0.? |
$[ ]$ |
124215.t1 |
124215be4 |
124215.t |
124215be |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5^{4} \cdot 7^{7} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1.123336969$ |
$1$ |
|
$6$ |
$1474560$ |
$2.089466$ |
$157551496201/13125$ |
$0.96087$ |
$4.50547$ |
$[1, 1, 1, -931785, 345782562]$ |
\(y^2+xy+y=x^3+x^2-931785x+345782562\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 42.6.0.a.1, 84.12.0.?, $\ldots$ |
$[(552, -399)]$ |
124215.t2 |
124215be2 |
124215.t |
124215be |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{8} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5460$ |
$48$ |
$0$ |
$2.246673938$ |
$1$ |
|
$8$ |
$737280$ |
$1.742893$ |
$47045881/11025$ |
$1.04751$ |
$3.81353$ |
$[1, 1, 1, -62280, 4588800]$ |
\(y^2+xy+y=x^3+x^2-62280x+4588800\) |
2.6.0.a.1, 20.12.0.a.1, 84.12.0.?, 156.12.0.?, 364.12.0.?, $\ldots$ |
$[(70, 725)]$ |
124215.t3 |
124215be1 |
124215.t |
124215be |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5 \cdot 7^{7} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$4.493347877$ |
$1$ |
|
$3$ |
$368640$ |
$1.396320$ |
$1771561/105$ |
$0.96659$ |
$3.53396$ |
$[1, 1, 1, -20875, -1108528]$ |
\(y^2+xy+y=x^3+x^2-20875x-1108528\) |
2.3.0.a.1, 4.6.0.c.1, 40.12.0.ba.1, 156.12.0.?, 168.12.0.?, $\ldots$ |
$[(-90, 271)]$ |
124215.t4 |
124215be3 |
124215.t |
124215be |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{4} \cdot 5 \cdot 7^{10} \cdot 13^{6} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$4.493347877$ |
$1$ |
|
$2$ |
$1474560$ |
$2.089466$ |
$590589719/972405$ |
$0.94478$ |
$4.08144$ |
$[1, 1, 1, 144745, 28852130]$ |
\(y^2+xy+y=x^3+x^2+144745x+28852130\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0.h.1, 168.12.0.?, 312.12.0.?, $\ldots$ |
$[(3255, 185455)]$ |
124215.u1 |
124215bn2 |
124215.u |
124215bn |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{6} \cdot 5^{2} \cdot 7^{6} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$414720$ |
$1.484470$ |
$258840217117/18225$ |
$0.98858$ |
$3.89179$ |
$[1, 1, 1, -84575, -9501640]$ |
\(y^2+xy+y=x^3+x^2-84575x-9501640\) |
2.3.0.a.1, 12.6.0.f.1, 26.6.0.b.1, 156.12.0.? |
$[ ]$ |
124215.u2 |
124215bn1 |
124215.u |
124215bn |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{3} \cdot 5^{4} \cdot 7^{6} \cdot 13^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$207360$ |
$1.137896$ |
$-51895117/16875$ |
$0.92390$ |
$3.20389$ |
$[1, 1, 1, -4950, -169590]$ |
\(y^2+xy+y=x^3+x^2-4950x-169590\) |
2.3.0.a.1, 12.6.0.f.1, 52.6.0.c.1, 78.6.0.?, 156.12.0.? |
$[ ]$ |
124215.v1 |
124215bp1 |
124215.v |
124215bp |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{5} \cdot 5^{3} \cdot 7^{2} \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$103680$ |
$0.699706$ |
$-11240062477/30375$ |
$0.91604$ |
$2.96119$ |
$[1, 1, 1, -2220, -41280]$ |
\(y^2+xy+y=x^3+x^2-2220x-41280\) |
390.2.0.? |
$[ ]$ |
124215.w1 |
124215cf1 |
124215.w |
124215cf |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{3} \cdot 5 \cdot 7^{7} \cdot 13^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$4.202741525$ |
$1$ |
|
$2$ |
$1437696$ |
$1.934177$ |
$-28561/945$ |
$0.95022$ |
$3.96583$ |
$[1, 0, 0, -29156, -14617695]$ |
\(y^2+xy=x^3-29156x-14617695\) |
420.2.0.? |
$[(291, 1104)]$ |
124215.x1 |
124215ce1 |
124215.x |
124215ce |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{5} \cdot 7^{11} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$420$ |
$2$ |
$0$ |
$3.786234868$ |
$1$ |
|
$2$ |
$691200$ |
$1.656902$ |
$-24606647689/157565625$ |
$0.93541$ |
$3.68481$ |
$[1, 0, 0, -16416, 2810625]$ |
\(y^2+xy=x^3-16416x+2810625\) |
420.2.0.? |
$[(221, 3050)]$ |
124215.y1 |
124215cd4 |
124215.y |
124215cd |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{5} \cdot 5^{4} \cdot 7^{10} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$5.137824447$ |
$1$ |
|
$0$ |
$15482880$ |
$3.277843$ |
$531301262949272089/4740474375$ |
$0.97353$ |
$5.78692$ |
$[1, 0, 0, -139729626, -635748677019]$ |
\(y^2+xy=x^3-139729626x-635748677019\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 120.12.0.?, 156.12.0.?, $\ldots$ |
$[(-27261/2, 41211/2)]$ |
124215.y2 |
124215cd2 |
124215.y |
124215cd |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{10} \cdot 5^{2} \cdot 7^{8} \cdot 13^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.6.0.1 |
2Cs |
$5460$ |
$48$ |
$0$ |
$2.568912223$ |
$1$ |
|
$6$ |
$7741440$ |
$2.931271$ |
$138742439989609/12224619225$ |
$0.93130$ |
$5.08354$ |
$[1, 0, 0, -8931231, -9459802080]$ |
\(y^2+xy=x^3-8931231x-9459802080\) |
2.6.0.a.1, 28.12.0-2.a.1.1, 60.12.0-2.a.1.2, 156.12.0.?, 260.12.0.?, $\ldots$ |
$[(-1872, 27396)]$ |
124215.y3 |
124215cd1 |
124215.y |
124215cd |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{5} \cdot 5 \cdot 7^{7} \cdot 13^{10} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1.284456111$ |
$1$ |
|
$7$ |
$3870720$ |
$2.584698$ |
$1408317602329/242911305$ |
$0.90102$ |
$4.69221$ |
$[1, 0, 0, -1933786, 867027251]$ |
\(y^2+xy=x^3-1933786x+867027251\) |
2.3.0.a.1, 4.6.0.c.1, 56.12.0-4.c.1.5, 120.12.0.?, 210.6.0.?, $\ldots$ |
$[(1145, 11849)]$ |
124215.y4 |
124215cd3 |
124215.y |
124215cd |
$4$ |
$4$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{20} \cdot 5 \cdot 7^{7} \cdot 13^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$5.137824447$ |
$1$ |
|
$0$ |
$15482880$ |
$3.277843$ |
$189425802193991/1586486902455$ |
$0.97102$ |
$5.33180$ |
$[1, 0, 0, 9908044, -44060014545]$ |
\(y^2+xy=x^3+9908044x-44060014545\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.1, 120.12.0.?, 260.12.0.?, $\ldots$ |
$[(65251/2, 16826975/2)]$ |
124215.z1 |
124215bw1 |
124215.z |
124215bw |
$1$ |
$1$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3^{5} \cdot 5^{3} \cdot 7^{8} \cdot 13^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$0.287612837$ |
$1$ |
|
$6$ |
$725760$ |
$1.672661$ |
$-11240062477/30375$ |
$0.91604$ |
$3.95656$ |
$[1, 0, 0, -108781, 13832636]$ |
\(y^2+xy=x^3-108781x+13832636\) |
390.2.0.? |
$[(53, 2840)]$ |
124215.ba1 |
124215cy2 |
124215.ba |
124215cy |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3^{2} \cdot 5^{2} \cdot 7^{9} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3311616$ |
$2.454117$ |
$37360194607/2925$ |
$0.89415$ |
$4.88047$ |
$[1, 0, 0, -4037160, 3121661997]$ |
\(y^2+xy=x^3-4037160x+3121661997\) |
2.3.0.a.1, 364.6.0.?, 420.6.0.?, 780.6.0.?, 5460.12.0.? |
$[ ]$ |
124215.ba2 |
124215cy1 |
124215.ba |
124215cy |
$2$ |
$2$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( 3 \cdot 5 \cdot 7^{9} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$5460$ |
$12$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$1655808$ |
$2.107544$ |
$11089567/2535$ |
$0.80282$ |
$4.18801$ |
$[1, 0, 0, -269305, 41817320]$ |
\(y^2+xy=x^3-269305x+41817320\) |
2.3.0.a.1, 210.6.0.?, 364.6.0.?, 780.6.0.?, 5460.12.0.? |
$[ ]$ |
124215.bb1 |
124215cn2 |
124215.bb |
124215cn |
$2$ |
$7$ |
\( 3 \cdot 5 \cdot 7^{2} \cdot 13^{2} \) |
\( - 3 \cdot 5^{14} \cdot 7^{8} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.8.0.1 |
7B |
$546$ |
$96$ |
$2$ |
$1.684537980$ |
$1$ |
|
$0$ |
$2568384$ |
$2.379982$ |
$-5229566958889/18310546875$ |
$0.98267$ |
$4.42767$ |
$[1, 0, 0, -358485, -219390900]$ |
\(y^2+xy=x^3-358485x-219390900\) |
6.2.0.a.1, 7.8.0.a.1, 42.16.0.a.1, 91.48.0.?, 546.96.2.? |
$[(16255/3, 1889680/3)]$ |