Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
120213.a1 |
120213l1 |
120213.a |
120213l |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{6} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$201600$ |
$1.024984$ |
$110592/37$ |
$0.76978$ |
$3.06676$ |
$[0, 0, 1, -3249, 46298]$ |
\(y^2+y=x^3-3249x+46298\) |
74.2.0.? |
$[ ]$ |
120213.b1 |
120213i1 |
120213.b |
120213i |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{6} \cdot 19^{7} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.643687366$ |
$1$ |
|
$2$ |
$645120$ |
$1.547915$ |
$110592/26011$ |
$0.86293$ |
$3.58013$ |
$[0, 0, 1, 3249, -1435246]$ |
\(y^2+y=x^3+3249x-1435246\) |
38.2.0.a.1 |
$[(177, 2164)]$ |
120213.c1 |
120213d2 |
120213.c |
120213d |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{9} \cdot 19^{6} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$3.448884348$ |
$1$ |
|
$2$ |
$628992$ |
$1.626350$ |
$10503459/1369$ |
$0.93244$ |
$3.73782$ |
$[1, -1, 1, -44471, -3166100]$ |
\(y^2+xy+y=x^3-x^2-44471x-3166100\) |
2.3.0.a.1, 12.6.0.a.1, 148.6.0.?, 444.12.0.? |
$[(-146, 518)]$ |
120213.c2 |
120213d1 |
120213.c |
120213d |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{9} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$6.897768696$ |
$1$ |
|
$1$ |
$314496$ |
$1.279778$ |
$9261/37$ |
$0.86736$ |
$3.28830$ |
$[1, -1, 1, 4264, -261494]$ |
\(y^2+xy+y=x^3-x^2+4264x-261494\) |
2.3.0.a.1, 12.6.0.b.1, 148.6.0.?, 222.6.0.?, 444.12.0.? |
$[(508/3, 9911/3)]$ |
120213.d1 |
120213b1 |
120213.d |
120213b |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{9} \cdot 19^{7} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$1520640$ |
$2.412590$ |
$17565861949875/26011$ |
$1.01226$ |
$4.96290$ |
$[1, -1, 1, -5278610, -4666637744]$ |
\(y^2+xy+y=x^3-x^2-5278610x-4666637744\) |
2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? |
$[ ]$ |
120213.d2 |
120213b2 |
120213.d |
120213b |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{9} \cdot 19^{8} \cdot 37^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3041280$ |
$2.759163$ |
$-17083807243875/676572121$ |
$0.94492$ |
$4.96618$ |
$[1, -1, 1, -5229875, -4757070410]$ |
\(y^2+xy+y=x^3-x^2-5229875x-4757070410\) |
2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? |
$[ ]$ |
120213.e1 |
120213f1 |
120213.e |
120213f |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{8} \cdot 19^{8} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$393984$ |
$1.675600$ |
$2375/333$ |
$0.79965$ |
$3.71085$ |
$[1, -1, 1, 6430, -3084514]$ |
\(y^2+xy+y=x^3-x^2+6430x-3084514\) |
148.2.0.? |
$[ ]$ |
120213.f1 |
120213h3 |
120213.f |
120213h |
$3$ |
$9$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37962$ |
$1296$ |
$43$ |
$18.62406696$ |
$1$ |
|
$0$ |
$1283040$ |
$2.243607$ |
$727057727488000/37$ |
$1.08598$ |
$4.99942$ |
$[0, 0, 1, -6086460, -5779566590]$ |
\(y^2+y=x^3-6086460x-5779566590\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.1, 74.2.0.?, $\ldots$ |
$[(-408549534919/16936, -369111972243/16936)]$ |
120213.f2 |
120213h2 |
120213.f |
120213h |
$3$ |
$9$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{6} \cdot 37^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$37962$ |
$1296$ |
$43$ |
$6.208022321$ |
$1$ |
|
$0$ |
$427680$ |
$1.694302$ |
$1404928000/50653$ |
$0.97274$ |
$3.87462$ |
$[0, 0, 1, -75810, -7779821]$ |
\(y^2+y=x^3-75810x-7779821\) |
3.12.0.a.1, 9.36.0.b.1, 57.24.0-3.a.1.1, 74.2.0.?, 171.72.0.?, $\ldots$ |
$[(-9823/8, 250639/8)]$ |
120213.f3 |
120213h1 |
120213.f |
120213h |
$3$ |
$9$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$37962$ |
$1296$ |
$43$ |
$2.069340773$ |
$1$ |
|
$2$ |
$142560$ |
$1.144995$ |
$4096000/37$ |
$0.88268$ |
$3.37555$ |
$[0, 0, 1, -10830, 430402]$ |
\(y^2+y=x^3-10830x+430402\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.2, 74.2.0.?, $\ldots$ |
$[(-76, 902)]$ |
120213.g1 |
120213e1 |
120213.g |
120213e |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{12} \cdot 19^{3} \cdot 37^{2} \) |
$2$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$2.711459388$ |
$1$ |
|
$10$ |
$238080$ |
$1.116013$ |
$11239424/998001$ |
$0.98487$ |
$3.13641$ |
$[0, 0, 1, 798, -107127]$ |
\(y^2+y=x^3+798x-107127\) |
38.2.0.a.1 |
$[(57, 351), (131, 1498)]$ |
120213.h1 |
120213g1 |
120213.h |
120213g |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{12} \cdot 19^{9} \cdot 37^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$3.537702921$ |
$1$ |
|
$2$ |
$4523520$ |
$2.588230$ |
$11239424/998001$ |
$0.98487$ |
$4.64677$ |
$[0, 0, 1, 288078, 734782378]$ |
\(y^2+y=x^3+288078x+734782378\) |
38.2.0.a.1 |
$[(7942, 709906)]$ |
120213.i1 |
120213j1 |
120213.i |
120213j |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{6} \cdot 19^{8} \cdot 37^{5} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3628800$ |
$2.706715$ |
$44091731607552/25033168477$ |
$1.20826$ |
$4.75981$ |
$[0, 0, 1, -2391264, 195795299]$ |
\(y^2+y=x^3-2391264x+195795299\) |
74.2.0.? |
$[ ]$ |
120213.j1 |
120213a1 |
120213.j |
120213a |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{3} \cdot 19^{7} \cdot 37^{2} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$506880$ |
$1.863283$ |
$17565861949875/26011$ |
$1.01226$ |
$4.39936$ |
$[1, -1, 0, -586512, 173033939]$ |
\(y^2+xy=x^3-x^2-586512x+173033939\) |
2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? |
$[ ]$ |
120213.j2 |
120213a2 |
120213.j |
120213a |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{3} \cdot 19^{8} \cdot 37^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$228$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1013760$ |
$2.209858$ |
$-17083807243875/676572121$ |
$0.94492$ |
$4.40264$ |
$[1, -1, 0, -581097, 176381492]$ |
\(y^2+xy=x^3-x^2-581097x+176381492\) |
2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? |
$[ ]$ |
120213.k1 |
120213k1 |
120213.k |
120213k |
$1$ |
$1$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{8} \cdot 19^{2} \cdot 37 \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$148$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$20736$ |
$0.203381$ |
$2375/333$ |
$0.79965$ |
$2.20050$ |
$[1, -1, 0, 18, 445]$ |
\(y^2+xy=x^3-x^2+18x+445\) |
148.2.0.? |
$[ ]$ |
120213.l1 |
120213c2 |
120213.l |
120213c |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( 3^{3} \cdot 19^{6} \cdot 37^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$4.147680451$ |
$1$ |
|
$2$ |
$209664$ |
$1.077045$ |
$10503459/1369$ |
$0.93244$ |
$3.17429$ |
$[1, -1, 0, -4941, 118910]$ |
\(y^2+xy=x^3-x^2-4941x+118910\) |
2.3.0.a.1, 12.6.0.a.1, 148.6.0.?, 444.12.0.? |
$[(-62, 460)]$ |
120213.l2 |
120213c1 |
120213.l |
120213c |
$2$ |
$2$ |
\( 3^{2} \cdot 19^{2} \cdot 37 \) |
\( - 3^{3} \cdot 19^{6} \cdot 37 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$444$ |
$12$ |
$0$ |
$8.295360903$ |
$1$ |
|
$1$ |
$104832$ |
$0.730472$ |
$9261/37$ |
$0.86736$ |
$2.72477$ |
$[1, -1, 0, 474, 9527]$ |
\(y^2+xy=x^3-x^2+474x+9527\) |
2.3.0.a.1, 12.6.0.b.1, 148.6.0.?, 222.6.0.?, 444.12.0.? |
$[(-1018/11, 98679/11)]$ |