Learn more

Refine search


Results (18 matches)

  displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
120213.a1 120213.a \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -3249, 46298]$ \(y^2+y=x^3-3249x+46298\) 74.2.0.? $[ ]$
120213.b1 120213.b \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $2.643687366$ $[0, 0, 1, 3249, -1435246]$ \(y^2+y=x^3+3249x-1435246\) 38.2.0.a.1 $[(177, 2164)]$
120213.c1 120213.c \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\Z/2\Z$ $3.448884348$ $[1, -1, 1, -44471, -3166100]$ \(y^2+xy+y=x^3-x^2-44471x-3166100\) 2.3.0.a.1, 12.6.0.a.1, 148.6.0.?, 444.12.0.? $[(-146, 518)]$
120213.c2 120213.c \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\Z/2\Z$ $6.897768696$ $[1, -1, 1, 4264, -261494]$ \(y^2+xy+y=x^3-x^2+4264x-261494\) 2.3.0.a.1, 12.6.0.b.1, 148.6.0.?, 222.6.0.?, 444.12.0.? $[(508/3, 9911/3)]$
120213.d1 120213.d \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -5278610, -4666637744]$ \(y^2+xy+y=x^3-x^2-5278610x-4666637744\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[ ]$
120213.d2 120213.d \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -5229875, -4757070410]$ \(y^2+xy+y=x^3-x^2-5229875x-4757070410\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? $[ ]$
120213.e1 120213.e \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 1, 6430, -3084514]$ \(y^2+xy+y=x^3-x^2+6430x-3084514\) 148.2.0.? $[ ]$
120213.f1 120213.f \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $18.62406696$ $[0, 0, 1, -6086460, -5779566590]$ \(y^2+y=x^3-6086460x-5779566590\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.1, 74.2.0.?, $\ldots$ $[(-408549534919/16936, -369111972243/16936)]$
120213.f2 120213.f \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $6.208022321$ $[0, 0, 1, -75810, -7779821]$ \(y^2+y=x^3-75810x-7779821\) 3.12.0.a.1, 9.36.0.b.1, 57.24.0-3.a.1.1, 74.2.0.?, 171.72.0.?, $\ldots$ $[(-9823/8, 250639/8)]$
120213.f3 120213.f \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $2.069340773$ $[0, 0, 1, -10830, 430402]$ \(y^2+y=x^3-10830x+430402\) 3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 57.8.0-3.a.1.2, 74.2.0.?, $\ldots$ $[(-76, 902)]$
120213.g1 120213.g \( 3^{2} \cdot 19^{2} \cdot 37 \) $2$ $\mathsf{trivial}$ $2.711459388$ $[0, 0, 1, 798, -107127]$ \(y^2+y=x^3+798x-107127\) 38.2.0.a.1 $[(57, 351), (131, 1498)]$
120213.h1 120213.h \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\mathsf{trivial}$ $3.537702921$ $[0, 0, 1, 288078, 734782378]$ \(y^2+y=x^3+288078x+734782378\) 38.2.0.a.1 $[(7942, 709906)]$
120213.i1 120213.i \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -2391264, 195795299]$ \(y^2+y=x^3-2391264x+195795299\) 74.2.0.? $[ ]$
120213.j1 120213.j \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -586512, 173033939]$ \(y^2+xy=x^3-x^2-586512x+173033939\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[ ]$
120213.j2 120213.j \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\Z/2\Z$ $1$ $[1, -1, 0, -581097, 176381492]$ \(y^2+xy=x^3-x^2-581097x+176381492\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? $[ ]$
120213.k1 120213.k \( 3^{2} \cdot 19^{2} \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[1, -1, 0, 18, 445]$ \(y^2+xy=x^3-x^2+18x+445\) 148.2.0.? $[ ]$
120213.l1 120213.l \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\Z/2\Z$ $4.147680451$ $[1, -1, 0, -4941, 118910]$ \(y^2+xy=x^3-x^2-4941x+118910\) 2.3.0.a.1, 12.6.0.a.1, 148.6.0.?, 444.12.0.? $[(-62, 460)]$
120213.l2 120213.l \( 3^{2} \cdot 19^{2} \cdot 37 \) $1$ $\Z/2\Z$ $8.295360903$ $[1, -1, 0, 474, 9527]$ \(y^2+xy=x^3-x^2+474x+9527\) 2.3.0.a.1, 12.6.0.b.1, 148.6.0.?, 222.6.0.?, 444.12.0.? $[(-1018/11, 98679/11)]$
  displayed columns for results