Learn more

The results below are complete, since the LMFDB contains all elliptic curves with conductor at most 500000

Refine search


Results (1-50 of 113 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
119025.a1 119025.a \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.096802430$ $[0, 0, 1, -11942175, 18053926906]$ \(y^2+y=x^3-11942175x+18053926906\) 230.2.0.? $[(1495, 59512)]$
119025.b1 119025.b \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $1.020335073$ $[0, 0, 1, -345, -2444]$ \(y^2+y=x^3-345x-2444\) 10.2.0.a.1 $[(-11, 4), (-10, 2)]$
119025.c1 119025.c \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $5.919826194$ $[0, 0, 1, -20988075, 11867007406]$ \(y^2+y=x^3-20988075x+11867007406\) 10.2.0.a.1 $[(-1640, 204637)]$
119025.d1 119025.d \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.579488953$ $[0, 0, 1, -4562625, 4311300406]$ \(y^2+y=x^3-4562625x+4311300406\) 6.2.0.a.1 $[(2116, 64273)]$
119025.e1 119025.e \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $2$ $\mathsf{trivial}$ $1.546197478$ $[0, 0, 1, -2182125, 1245216406]$ \(y^2+y=x^3-2182125x+1245216406\) 230.2.0.? $[(874, 2380), (4025/2, 66121/2)]$
119025.f1 119025.f \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -57489075, 167878364906]$ \(y^2+y=x^3-57489075x+167878364906\) 6.2.0.a.1 $[ ]$
119025.g1 119025.g \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -86689875, 310667235156]$ \(y^2+y=x^3-86689875x+310667235156\) 10.2.0.a.1 $[ ]$
119025.h1 119025.h \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -163875, -25533594]$ \(y^2+y=x^3-163875x-25533594\) 10.2.0.a.1 $[ ]$
119025.i1 119025.i \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -108675, -13797844]$ \(y^2+y=x^3-108675x-13797844\) 6.2.0.a.1 $[ ]$
119025.j1 119025.j \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $2.307969409$ $[0, 0, 1, -8625, -354344]$ \(y^2+y=x^3-8625x-354344\) 6.2.0.a.1 $[(151, 1336)]$
119025.k1 119025.k \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.521156095$ $[0, 0, 1, -39675, -975344]$ \(y^2+y=x^3-39675x-975344\) 10.2.0.a.1 $[(-115, 1437)]$
119025.l1 119025.l \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -39675, -3117794]$ \(y^2+y=x^3-39675x-3117794\) 5.12.0.a.2, 6.2.0.a.1, 30.24.1.d.2, 230.24.0.?, 345.24.0.?, $\ldots$ $[ ]$
119025.l2 119025.l \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, 198375, 150186406]$ \(y^2+y=x^3+198375x+150186406\) 5.12.0.a.1, 6.2.0.a.1, 30.24.1.d.1, 230.24.0.?, 345.24.0.?, $\ldots$ $[ ]$
119025.m1 119025.m \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 1, -182505, 29733106]$ \(y^2+y=x^3-182505x+29733106\) 10.2.0.a.1 $[ ]$
119025.n1 119025.n \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $6.941785781$ $[1, -1, 1, -3954110, 1725982062]$ \(y^2+xy+y=x^3-x^2-3954110x+1725982062\) 92.2.0.? $[(-1960, 45066)]$
119025.o1 119025.o \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $8.508730927$ $[1, -1, 1, -6786905, -6803730318]$ \(y^2+xy+y=x^3-x^2-6786905x-6803730318\) 5.10.0.a.1, 20.20.0.d.1, 92.2.0.?, 115.20.0.?, 460.40.1.? $[(364908/11, 14277870/11)]$
119025.p1 119025.p \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -9380, -346878]$ \(y^2+xy+y=x^3-x^2-9380x-346878\) 2.3.0.a.1, 20.6.0.d.1, 138.6.0.?, 1380.12.0.? $[ ]$
119025.p2 119025.p \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -755, -1878]$ \(y^2+xy+y=x^3-x^2-755x-1878\) 2.3.0.a.1, 20.6.0.d.1, 276.6.0.?, 690.6.0.?, 1380.12.0.? $[ ]$
119025.q1 119025.q \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $3.171522764$ $[1, -1, 1, -90818555, 329521461572]$ \(y^2+xy+y=x^3-x^2-90818555x+329521461572\) 92.2.0.? $[(7228, 221475)]$
119025.r1 119025.r \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -2906690, -1906555138]$ \(y^2+xy+y=x^3-x^2-2906690x-1906555138\) 2.3.0.a.1, 60.6.0.c.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[ ]$
119025.r2 119025.r \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -169115, -34053838]$ \(y^2+xy+y=x^3-x^2-169115x-34053838\) 2.3.0.a.1, 30.6.0.a.1, 276.6.0.?, 460.6.0.?, 1380.12.0.? $[ ]$
119025.s1 119025.s \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $12.88852414$ $[1, -1, 1, -67013555, 151497091572]$ \(y^2+xy+y=x^3-x^2-67013555x+151497091572\) 92.2.0.? $[(404492/13, 149750895/13)]$
119025.t1 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $20.63742295$ $[1, -1, 1, -257096480, -1586626543978]$ \(y^2+xy+y=x^3-x^2-257096480x-1586626543978\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.bb.2, 10.6.0.a.1, 16.48.0.x.2, $\ldots$ $[(46101122853/1364, 6804633406788215/1364)]$
119025.t2 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.31871147$ $[1, -1, 1, -16070855, -24780493978]$ \(y^2+xy+y=x^3-x^2-16070855x-24780493978\) 2.6.0.a.1, 4.12.0.b.1, 8.48.0.k.1, 20.24.0.c.1, 40.96.1.cc.2, $\ldots$ $[(-449921/14, -5734975/14)]$
119025.t3 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.159355737$ $[1, -1, 1, -13095230, -34242981478]$ \(y^2+xy+y=x^3-x^2-13095230x-34242981478\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 16.48.0.u.2, 20.12.0.h.1, $\ldots$ $[(87429, 25784710)]$
119025.t4 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $5.159355737$ $[1, -1, 1, -9524480, 11316217772]$ \(y^2+xy+y=x^3-x^2-9524480x+11316217772\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.by.2, $\ldots$ $[(9247/2, 315555/2)]$
119025.t5 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $5.159355737$ $[1, -1, 1, -1192730, -231587728]$ \(y^2+xy+y=x^3-x^2-1192730x-231587728\) 2.6.0.a.1, 4.24.0.b.1, 8.48.0.b.2, 24.96.1.n.1, 40.96.1.s.1, $\ldots$ $[(-1409/2, 97655/2)]$
119025.t6 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.579677868$ $[1, -1, 1, -597605, 175477772]$ \(y^2+xy+y=x^3-x^2-597605x+175477772\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.i.1, 16.48.0.d.2, 24.48.0.bb.2, $\ldots$ $[(309, 4345)]$
119025.t7 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $1.289838934$ $[1, -1, 1, -2480, 7652522]$ \(y^2+xy+y=x^3-x^2-2480x+7652522\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 16.24.0.g.1, 24.24.0.bz.1, $\ldots$ $[(-132, 2446)]$
119025.t8 119025.t \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $10.31871147$ $[1, -1, 1, 4163395, -1742014978]$ \(y^2+xy+y=x^3-x^2+4163395x-1742014978\) 2.3.0.a.1, 4.12.0.d.1, 8.48.0.n.2, 24.96.1.cv.2, 80.96.1.?, $\ldots$ $[(891837/28, 1454362645/28)]$
119025.u1 119025.u \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -26285, 738492]$ \(y^2+xy+y=x^3-x^2-26285x+738492\) 2.3.0.a.1, 20.6.0.b.1, 276.6.0.?, 690.6.0.?, 1380.12.0.? $[ ]$
119025.u2 119025.u \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, 92740, 5499492]$ \(y^2+xy+y=x^3-x^2+92740x+5499492\) 2.3.0.a.1, 20.6.0.a.1, 276.6.0.?, 1380.12.0.? $[ ]$
119025.v1 119025.v \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.951281938$ $[1, -1, 1, -10415, 156592]$ \(y^2+xy+y=x^3-x^2-10415x+156592\) 92.2.0.? $[(98, 215)]$
119025.w1 119025.w \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $4.848533559$ $[1, -1, 1, -126680, -12418428]$ \(y^2+xy+y=x^3-x^2-126680x-12418428\) 92.2.0.? $[(420, 2676)]$
119025.x1 119025.x \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $8.343715627$ $[1, -1, 1, -72655340, 238385923472]$ \(y^2+xy+y=x^3-x^2-72655340x+238385923472\) 92.2.0.? $[(-7152, 629791)]$
119025.y1 119025.y \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $17.55974682$ $[1, -1, 1, -48921755, -131381056128]$ \(y^2+xy+y=x^3-x^2-48921755x-131381056128\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0.h.1, 40.12.0-4.c.1.3, 120.24.0.?, $\ldots$ $[(-426506919/328, 623631314615/328)]$
119025.y2 119025.y \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.389936705$ $[1, -1, 1, -45351005, 117114577872]$ \(y^2+xy+y=x^3-x^2-45351005x+117114577872\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.3, 60.12.0-4.c.1.1, $\ldots$ $[(-21169/2, 3677415/2)]$
119025.y3 119025.y \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $8.779873410$ $[1, -1, 1, -4287380, -245262378]$ \(y^2+xy+y=x^3-x^2-4287380x-245262378\) 2.6.0.a.1, 12.12.0.a.1, 20.12.0-2.a.1.2, 60.24.0-12.a.1.4, 92.12.0.?, $\ldots$ $[(-92599/8, 28072815/8)]$
119025.y4 119025.y \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\Z/2\Z$ $4.389936705$ $[1, -1, 1, 1068745, -31017378]$ \(y^2+xy+y=x^3-x^2+1068745x-31017378\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0.ba.1, 40.12.0-4.c.1.3, 46.6.0.a.1, $\ldots$ $[(11690, 1262961)]$
119025.z1 119025.z \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -4961855, 4250232522]$ \(y^2+xy+y=x^3-x^2-4961855x+4250232522\) 2.3.0.a.1, 20.6.0.d.1, 138.6.0.?, 1380.12.0.? $[ ]$
119025.z2 119025.z \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\Z/2\Z$ $1$ $[1, -1, 1, -399230, 25241772]$ \(y^2+xy+y=x^3-x^2-399230x+25241772\) 2.3.0.a.1, 20.6.0.d.1, 276.6.0.?, 690.6.0.?, 1380.12.0.? $[ ]$
119025.ba1 119025.ba \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $0.890620679$ $[1, -1, 1, -12830, 562542]$ \(y^2+xy+y=x^3-x^2-12830x+562542\) 5.10.0.a.1, 20.20.0.d.1, 92.2.0.?, 115.20.0.?, 460.40.1.? $[(65, -24)]$
119025.bb1 119025.bb \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -11158594]$ \(y^2+y=x^3-11158594\) $[ ]$
119025.bb2 119025.bb \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 413281]$ \(y^2+y=x^3+413281\) $[ ]$
119025.bc1 119025.bc \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $-3$ $17.27172468$ $[0, 0, 1, 0, -40227144]$ \(y^2+y=x^3-40227144\) $[(53765864/73, 394231410616/73)]$
119025.bc2 119025.bc \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $-3$ $5.757241562$ $[0, 0, 1, 0, 1086132881]$ \(y^2+y=x^3+1086132881\) $[(219, 33115)]$
119025.bd1 119025.bd \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $-3$ $4.804155382$ $[0, 0, 1, 0, -1901094]$ \(y^2+y=x^3-1901094\) $[(4784, 330889)]$
119025.bd2 119025.bd \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $1$ $\mathsf{trivial}$ $-3$ $1.601385127$ $[0, 0, 1, 0, 51329531]$ \(y^2+y=x^3+51329531\) $[(-69, 7141)]$
119025.be1 119025.be \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, -236115844]$ \(y^2+y=x^3-236115844\) $[ ]$
119025.be2 119025.be \( 3^{2} \cdot 5^{2} \cdot 23^{2} \) $0$ $\mathsf{trivial}$ $-3$ $1$ $[0, 0, 1, 0, 8745031]$ \(y^2+y=x^3+8745031\) $[ ]$
Next   displayed columns for results