| Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
Manin constant |
| 11552.a1 |
11552f1 |
11552.a |
11552f |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$456$ |
$12$ |
$1$ |
$13.09335518$ |
$1$ |
|
$0$ |
$273600$ |
$2.023033$ |
$-1042590744$ |
$1.29588$ |
$5.71945$ |
$[0, 0, 0, -1159171, -480363206]$ |
\(y^2=x^3-1159171x-480363206\) |
3.3.0.a.1, 12.6.0.d.1, 152.2.0.?, 456.12.1.? |
$[(28558710/137, 91948434244/137)]$ |
$1$ |
| 11552.b1 |
11552s1 |
11552.b |
11552s |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$456$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$14400$ |
$0.550813$ |
$-1042590744$ |
$1.29588$ |
$3.83090$ |
$[0, 0, 0, -3211, -70034]$ |
\(y^2=x^3-3211x-70034\) |
3.3.0.a.1, 12.6.0.d.1, 152.2.0.?, 456.12.1.? |
$[ ]$ |
$1$ |
| 11552.c1 |
11552m1 |
11552.c |
11552m |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$0.925941$ |
$27000/19$ |
$0.79171$ |
$3.64617$ |
$[0, 0, 0, 1805, -13718]$ |
\(y^2=x^3+1805x-13718\) |
152.2.0.? |
$[ ]$ |
$1$ |
| 11552.d1 |
11552u1 |
11552.d |
11552u |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$2.153833786$ |
$1$ |
|
$2$ |
$2016$ |
$-0.270991$ |
$-4104$ |
$0.69588$ |
$2.22332$ |
$[0, 0, 0, -19, -38]$ |
\(y^2=x^3-19x-38\) |
8.2.0.a.1 |
$[(6, 8)]$ |
$1$ |
| 11552.e1 |
11552r1 |
11552.e |
11552r |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$38304$ |
$1.201229$ |
$-4104$ |
$0.69588$ |
$4.11187$ |
$[0, 0, 0, -6859, -260642]$ |
\(y^2=x^3-6859x-260642\) |
8.2.0.a.1 |
$[ ]$ |
$1$ |
| 11552.f1 |
11552p1 |
11552.f |
11552p |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$228$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$60800$ |
$1.586012$ |
$512$ |
$0.69588$ |
$4.48132$ |
$[0, 1, 0, 18291, -1461221]$ |
\(y^2=x^3+x^2+18291x-1461221\) |
3.3.0.a.1, 12.6.0.h.1, 38.2.0.a.1, 114.6.1.?, 228.12.1.? |
$[ ]$ |
$1$ |
| 11552.g1 |
11552c1 |
11552.g |
11552c |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$228$ |
$12$ |
$1$ |
$0.982580840$ |
$1$ |
|
$2$ |
$3200$ |
$0.113792$ |
$512$ |
$0.69588$ |
$2.59277$ |
$[0, 1, 0, 51, -197]$ |
\(y^2=x^3+x^2+51x-197\) |
3.3.0.a.1, 12.6.0.h.1, 38.2.0.a.1, 114.6.1.?, 228.12.1.? |
$[(6, 19)]$ |
$1$ |
| 11552.h1 |
11552h2 |
11552.h |
11552h |
$4$ |
$4$ |
\( 2^{5} \cdot 19^{2} \) |
\( 2^{9} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-16$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$7200$ |
$0.854834$ |
$287496$ |
$1.17246$ |
$3.89903$ |
$[0, 0, 0, -3971, -96026]$ |
\(y^2=x^3-3971x-96026\) |
|
$[ ]$ |
$1$ |
| 11552.h2 |
11552h3 |
11552.h |
11552h |
$4$ |
$4$ |
\( 2^{5} \cdot 19^{2} \) |
\( 2^{9} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-16$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$7200$ |
$0.854834$ |
$287496$ |
$1.17246$ |
$3.89903$ |
$[0, 0, 0, -3971, 96026]$ |
\(y^2=x^3-3971x+96026\) |
|
$[ ]$ |
$1$ |
| 11552.h3 |
11552h1 |
11552.h |
11552h |
$4$ |
$4$ |
\( 2^{5} \cdot 19^{2} \) |
\( 2^{6} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.143 |
2Cs |
|
|
|
$1$ |
$1$ |
|
$3$ |
$3600$ |
$0.508260$ |
$1728$ |
|
$3.13003$ |
$[0, 0, 0, -361, 0]$ |
\(y^2=x^3-361x\) |
|
$[ ]$ |
$1$ |
| 11552.h4 |
11552h4 |
11552.h |
11552h |
$4$ |
$4$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{6} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
$2$ |
16.192.9.178 |
2B |
|
|
|
$1$ |
$1$ |
|
$1$ |
$7200$ |
$0.854834$ |
$1728$ |
|
$3.57461$ |
$[0, 0, 0, 1444, 0]$ |
\(y^2=x^3+1444x\) |
|
$[ ]$ |
$1$ |
| 11552.i1 |
11552n2 |
11552.i |
11552n |
$2$ |
$2$ |
\( 2^{5} \cdot 19^{2} \) |
\( 2^{12} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$27360$ |
$1.590944$ |
$1728$ |
|
$4.51889$ |
$[0, 0, 0, -27436, 0]$ |
\(y^2=x^3-27436x\) |
|
$[ ]$ |
$1$ |
| 11552.i2 |
11552n1 |
11552.i |
11552n |
$2$ |
$2$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1$ |
$1$ |
|
$1$ |
$13680$ |
$1.244370$ |
$1728$ |
|
$4.07431$ |
$[0, 0, 0, 6859, 0]$ |
\(y^2=x^3+6859x\) |
|
$[ ]$ |
$1$ |
| 11552.j1 |
11552a2 |
11552.j |
11552a |
$2$ |
$2$ |
\( 2^{5} \cdot 19^{2} \) |
\( 2^{12} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$1.049379600$ |
$1$ |
|
$5$ |
$1440$ |
$0.118724$ |
$1728$ |
|
$2.63034$ |
$[0, 0, 0, -76, 0]$ |
\(y^2=x^3-76x\) |
|
$[(-2, 12)]$ |
$1$ |
| 11552.j2 |
11552a1 |
11552.j |
11552a |
$2$ |
$2$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{6} \cdot 19^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q(\sqrt{-1})$ |
$-4$ |
$N(\mathrm{U}(1))$ |
|
✓ |
|
|
|
|
|
|
$2.098759201$ |
$1$ |
|
$3$ |
$720$ |
$-0.227849$ |
$1728$ |
|
$2.18576$ |
$[0, 0, 0, 19, 0]$ |
\(y^2=x^3+19x\) |
|
$[(9, 30)]$ |
$1$ |
| 11552.k1 |
11552g1 |
11552.k |
11552g |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$11520$ |
$1.103226$ |
$-13824/19$ |
$0.69588$ |
$3.92693$ |
$[0, 0, 0, -2888, -109744]$ |
\(y^2=x^3-2888x-109744\) |
38.2.0.a.1 |
$[ ]$ |
$1$ |
| 11552.l1 |
11552t1 |
11552.l |
11552t |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{7} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$38$ |
$2$ |
$0$ |
$0.718326075$ |
$1$ |
|
$2$ |
$11520$ |
$1.103226$ |
$-13824/19$ |
$0.69588$ |
$3.92693$ |
$[0, 0, 0, -2888, 109744]$ |
\(y^2=x^3-2888x+109744\) |
38.2.0.a.1 |
$[(57, 361)]$ |
$1$ |
| 11552.m1 |
11552j1 |
11552.m |
11552j |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$380$ |
$60$ |
$3$ |
$1$ |
$1$ |
|
$0$ |
$172800$ |
$2.071312$ |
$-4741632/2476099$ |
$1.30327$ |
$5.14852$ |
$[0, 0, 0, -20216, 33252432]$ |
\(y^2=x^3-20216x+33252432\) |
5.15.0.a.1, 20.30.0.a.1, 38.2.0.a.1, 190.30.2.?, 380.60.3.? |
$[ ]$ |
$1$ |
| 11552.n1 |
11552i1 |
11552.n |
11552i |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{11} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$5$ |
5.15.0.1 |
5Ns |
$380$ |
$60$ |
$3$ |
$1$ |
$4$ |
$2$ |
$0$ |
$172800$ |
$2.071312$ |
$-4741632/2476099$ |
$1.30327$ |
$5.14852$ |
$[0, 0, 0, -20216, -33252432]$ |
\(y^2=x^3-20216x-33252432\) |
5.15.0.a.1, 20.30.0.a.1, 38.2.0.a.1, 190.30.2.?, 380.60.3.? |
$[ ]$ |
$1$ |
| 11552.o1 |
11552b1 |
11552.o |
11552b |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{3} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$228$ |
$12$ |
$1$ |
$1.216342591$ |
$1$ |
|
$2$ |
$3200$ |
$0.113792$ |
$512$ |
$0.69588$ |
$2.59277$ |
$[0, -1, 0, 51, 197]$ |
\(y^2=x^3-x^2+51x+197\) |
3.3.0.a.1, 12.6.0.h.1, 38.2.0.a.1, 114.6.1.?, 228.12.1.? |
$[(-1, 12)]$ |
$1$ |
| 11552.p1 |
11552o1 |
11552.p |
11552o |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{12} \cdot 19^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$228$ |
$12$ |
$1$ |
$1$ |
$4$ |
$2$ |
$0$ |
$60800$ |
$1.586012$ |
$512$ |
$0.69588$ |
$4.48132$ |
$[0, -1, 0, 18291, 1461221]$ |
\(y^2=x^3-x^2+18291x+1461221\) |
3.3.0.a.1, 12.6.0.h.1, 38.2.0.a.1, 114.6.1.?, 228.12.1.? |
$[ ]$ |
$1$ |
| 11552.q1 |
11552q1 |
11552.q |
11552q |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$456$ |
$12$ |
$1$ |
$1$ |
$1$ |
|
$0$ |
$14400$ |
$0.550813$ |
$-1042590744$ |
$1.29588$ |
$3.83090$ |
$[0, 0, 0, -3211, 70034]$ |
\(y^2=x^3-3211x+70034\) |
3.3.0.a.1, 12.6.0.d.1, 152.2.0.?, 456.12.1.? |
$[ ]$ |
$1$ |
| 11552.r1 |
11552e1 |
11552.r |
11552e |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$3$ |
3.3.0.1 |
3Nn |
$456$ |
$12$ |
$1$ |
$3.724308179$ |
$1$ |
|
$0$ |
$273600$ |
$2.023033$ |
$-1042590744$ |
$1.29588$ |
$5.71945$ |
$[0, 0, 0, -1159171, 480363206]$ |
\(y^2=x^3-1159171x+480363206\) |
3.3.0.a.1, 12.6.0.d.1, 152.2.0.?, 456.12.1.? |
$[(361/3, 562438/3)]$ |
$1$ |
| 11552.s1 |
11552k1 |
11552.s |
11552k |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$152$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$0.925941$ |
$27000/19$ |
$0.79171$ |
$3.64617$ |
$[0, 0, 0, 1805, 13718]$ |
\(y^2=x^3+1805x+13718\) |
152.2.0.? |
$[ ]$ |
$1$ |
| 11552.t1 |
11552d1 |
11552.t |
11552d |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$11.57995318$ |
$1$ |
|
$0$ |
$38304$ |
$1.201229$ |
$-4104$ |
$0.69588$ |
$4.11187$ |
$[0, 0, 0, -6859, 260642]$ |
\(y^2=x^3-6859x+260642\) |
8.2.0.a.1 |
$[(67666/39, 12378898/39)]$ |
$1$ |
| 11552.u1 |
11552l1 |
11552.u |
11552l |
$1$ |
$1$ |
\( 2^{5} \cdot 19^{2} \) |
\( - 2^{9} \cdot 19^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
✓ |
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$2016$ |
$-0.270991$ |
$-4104$ |
$0.69588$ |
$2.22332$ |
$[0, 0, 0, -19, 38]$ |
\(y^2=x^3-19x+38\) |
8.2.0.a.1 |
$[ ]$ |
$1$ |