Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
103933.a1 |
103933c4 |
103933.a |
103933c |
$4$ |
$4$ |
\( 37 \cdot 53^{2} \) |
\( 37^{4} \cdot 53^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.8 |
2B |
$15688$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1280448$ |
$2.296467$ |
$3332653354953/99330533$ |
$0.88123$ |
$4.55842$ |
$[1, -1, 1, -874126, -306137768]$ |
\(y^2+xy+y=x^3-x^2-874126x-306137768\) |
2.3.0.a.1, 4.12.0-4.c.1.2, 106.6.0.?, 212.24.0.?, 296.24.0.?, $\ldots$ |
$[ ]$ |
103933.a2 |
103933c2 |
103933.a |
103933c |
$4$ |
$4$ |
\( 37 \cdot 53^{2} \) |
\( 37^{2} \cdot 53^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.1 |
2Cs |
$7844$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$2$ |
$640224$ |
$1.949892$ |
$10896752313/3845521$ |
$0.87414$ |
$4.06298$ |
$[1, -1, 1, -129741, 11267996]$ |
\(y^2+xy+y=x^3-x^2-129741x+11267996\) |
2.6.0.a.1, 4.12.0-2.a.1.1, 148.24.0.?, 212.24.0.?, 7844.48.0.? |
$[ ]$ |
103933.a3 |
103933c1 |
103933.a |
103933c |
$4$ |
$4$ |
\( 37 \cdot 53^{2} \) |
\( 37 \cdot 53^{7} \) |
$0$ |
$\Z/4\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.12.0.7 |
2B |
$15688$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$3$ |
$320112$ |
$1.603319$ |
$7727161833/1961$ |
$0.85206$ |
$4.03322$ |
$[1, -1, 1, -115696, 15172506]$ |
\(y^2+xy+y=x^3-x^2-115696x+15172506\) |
2.3.0.a.1, 4.12.0-4.c.1.1, 296.24.0.?, 424.24.0.?, 3922.6.0.?, $\ldots$ |
$[ ]$ |
103933.a4 |
103933c3 |
103933.a |
103933c |
$4$ |
$4$ |
\( 37 \cdot 53^{2} \) |
\( - 37 \cdot 53^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.6 |
2B |
$15688$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$1280448$ |
$2.296467$ |
$295807676247/291947797$ |
$0.88201$ |
$4.34876$ |
$[1, -1, 1, 389924, 78616580]$ |
\(y^2+xy+y=x^3-x^2+389924x+78616580\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.5, 148.12.0.?, 212.12.0.?, $\ldots$ |
$[ ]$ |
103933.b1 |
103933b3 |
103933.b |
103933b |
$3$ |
$9$ |
\( 37 \cdot 53^{2} \) |
\( 37 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$105894$ |
$1296$ |
$43$ |
$1$ |
$9$ |
$3$ |
$0$ |
$906984$ |
$2.207226$ |
$727057727488000/37$ |
$1.08598$ |
$5.02461$ |
$[0, -1, 1, -5262193, -4644450356]$ |
\(y^2+y=x^3-x^2-5262193x-4644450356\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 159.8.0.?, $\ldots$ |
$[ ]$ |
103933.b2 |
103933b2 |
103933.b |
103933b |
$3$ |
$9$ |
\( 37 \cdot 53^{2} \) |
\( 37^{3} \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
9.36.0.2 |
3Cs |
$105894$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$302328$ |
$1.657921$ |
$1404928000/50653$ |
$0.97274$ |
$3.88564$ |
$[0, -1, 1, -65543, -6232365]$ |
\(y^2+y=x^3-x^2-65543x-6232365\) |
3.12.0.a.1, 9.36.0.b.1, 74.2.0.?, 159.24.0.?, 222.24.1.?, $\ldots$ |
$[ ]$ |
103933.b3 |
103933b1 |
103933.b |
103933b |
$3$ |
$9$ |
\( 37 \cdot 53^{2} \) |
\( 37 \cdot 53^{6} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
27.36.0.1 |
3B |
$105894$ |
$1296$ |
$43$ |
$1$ |
$1$ |
|
$0$ |
$100776$ |
$1.108616$ |
$4096000/37$ |
$0.88268$ |
$3.38028$ |
$[0, -1, 1, -9363, 349122]$ |
\(y^2+y=x^3-x^2-9363x+349122\) |
3.4.0.a.1, 9.12.0.a.1, 27.36.0.a.1, 74.2.0.?, 159.8.0.?, $\ldots$ |
$[ ]$ |
103933.c1 |
103933a1 |
103933.c |
103933a |
$1$ |
$1$ |
\( 37 \cdot 53^{2} \) |
\( 37 \cdot 53^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$74$ |
$2$ |
$0$ |
$31.82847525$ |
$1$ |
|
$0$ |
$303160$ |
$0.988604$ |
$110592/37$ |
$0.76978$ |
$3.06760$ |
$[0, 0, 1, -2809, 37219]$ |
\(y^2+y=x^3-2809x+37219\) |
74.2.0.? |
$[(-31839893674511/938454, 249618881688397199837/938454)]$ |