Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
10140.a1 |
10140f1 |
10140.a |
10140f |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5 \cdot 13^{9} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1.364097183$ |
$1$ |
|
$4$ |
$131040$ |
$1.866264$ |
$-22478848/10935$ |
$1.00451$ |
$5.00506$ |
$[0, -1, 0, -82021, 12293761]$ |
\(y^2=x^3-x^2-82021x+12293761\) |
390.2.0.? |
$[(-225, 4394)]$ |
10140.b1 |
10140d1 |
10140.b |
10140d |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{13} \cdot 5^{5} \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$262080$ |
$2.497982$ |
$3186827264/64769371875$ |
$1.15762$ |
$5.77648$ |
$[0, -1, 0, 32899, -430425399]$ |
\(y^2=x^3-x^2+32899x-430425399\) |
390.2.0.? |
$[ ]$ |
10140.c1 |
10140a1 |
10140.c |
10140a |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{15} \cdot 5^{2} \cdot 13^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$34560$ |
$1.646484$ |
$-143737544704/358722675$ |
$1.08334$ |
$4.67966$ |
$[0, -1, 0, -21181, 2741881]$ |
\(y^2=x^3-x^2-21181x+2741881\) |
6.2.0.a.1 |
$[ ]$ |
10140.d1 |
10140e2 |
10140.d |
10140e |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{8} \cdot 3 \cdot 5^{8} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$5.042778865$ |
$1$ |
|
$3$ |
$11520$ |
$0.978980$ |
$4877139472/1171875$ |
$1.11253$ |
$3.85374$ |
$[0, -1, 0, -2916, -45384]$ |
\(y^2=x^3-x^2-2916x-45384\) |
2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? |
$[(529, 12090)]$ |
10140.d2 |
10140e1 |
10140.d |
10140e |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 13^{3} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$2.521389432$ |
$1$ |
|
$3$ |
$5760$ |
$0.632406$ |
$63404326912/5625$ |
$1.03071$ |
$3.83123$ |
$[0, -1, 0, -2721, -53730]$ |
\(y^2=x^3-x^2-2721x-53730\) |
2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? |
$[(78, 450)]$ |
10140.e1 |
10140b1 |
10140.e |
10140b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{2} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.3 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$16128$ |
$1.227318$ |
$8077950976/26325$ |
$0.94883$ |
$4.44207$ |
$[0, -1, 0, -17801, 917526]$ |
\(y^2=x^3-x^2-17801x+917526\) |
2.3.0.a.1, 4.6.0.b.1, 24.12.0-4.b.1.2, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[ ]$ |
10140.e2 |
10140b2 |
10140.e |
10140b |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{2} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
4.6.0.5 |
2B |
$1560$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$32256$ |
$1.573893$ |
$-94875856/950625$ |
$0.90630$ |
$4.57605$ |
$[0, -1, 0, -10196, 1699320]$ |
\(y^2=x^3-x^2-10196x+1699320\) |
2.3.0.a.1, 4.6.0.a.1, 24.12.0-4.a.1.2, 52.12.0.d.1, 312.24.0.?, $\ldots$ |
$[ ]$ |
10140.f1 |
10140c1 |
10140.f |
10140c |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{2} \cdot 13^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$29952$ |
$1.220343$ |
$106496/75$ |
$0.85441$ |
$4.08062$ |
$[0, -1, 0, 5859, 78441]$ |
\(y^2=x^3-x^2+5859x+78441\) |
6.2.0.a.1 |
$[ ]$ |
10140.g1 |
10140h1 |
10140.g |
10140h |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{2} \cdot 13^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$1.048012499$ |
$1$ |
|
$2$ |
$2304$ |
$-0.062132$ |
$106496/75$ |
$0.85441$ |
$2.41222$ |
$[0, -1, 0, 35, 25]$ |
\(y^2=x^3-x^2+35x+25\) |
6.2.0.a.1 |
$[(0, 5)]$ |
10140.h1 |
10140i2 |
10140.h |
10140i |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{8} \cdot 3 \cdot 5^{8} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$149760$ |
$2.261456$ |
$4877139472/1171875$ |
$1.11253$ |
$5.52214$ |
$[0, -1, 0, -492860, -101680008]$ |
\(y^2=x^3-x^2-492860x-101680008\) |
2.3.0.a.1, 12.6.0.g.1, 52.6.0.c.1, 156.12.0.? |
$[ ]$ |
10140.h2 |
10140i1 |
10140.h |
10140i |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{4} \cdot 13^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
2.3.0.1 |
2B |
$156$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$74880$ |
$1.914881$ |
$63404326912/5625$ |
$1.03071$ |
$5.49963$ |
$[0, -1, 0, -459905, -119884350]$ |
\(y^2=x^3-x^2-459905x-119884350\) |
2.3.0.a.1, 12.6.0.g.1, 26.6.0.b.1, 156.12.0.? |
$[ ]$ |
10140.i1 |
10140g1 |
10140.i |
10140g |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{15} \cdot 5^{2} \cdot 13^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$6$ |
$2$ |
$0$ |
$6.503762250$ |
$1$ |
|
$2$ |
$449280$ |
$2.928959$ |
$-143737544704/358722675$ |
$1.08334$ |
$6.34805$ |
$[0, -1, 0, -3579645, 6009594057]$ |
\(y^2=x^3-x^2-3579645x+6009594057\) |
6.2.0.a.1 |
$[(-2341, 39430)]$ |
10140.j1 |
10140j1 |
10140.j |
10140j |
$1$ |
$1$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{7} \cdot 5 \cdot 13^{3} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$390$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10080$ |
$0.583789$ |
$-22478848/10935$ |
$1.00451$ |
$3.33666$ |
$[0, -1, 0, -485, 5745]$ |
\(y^2=x^3-x^2-485x+5745\) |
390.2.0.? |
$[ ]$ |
10140.k1 |
10140k2 |
10140.k |
10140k |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3 \cdot 5^{3} \cdot 13^{9} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$390$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$36288$ |
$1.605474$ |
$-4684079104/823875$ |
$0.93879$ |
$4.71233$ |
$[0, 1, 0, -37405, -3192097]$ |
\(y^2=x^3+x^2-37405x-3192097\) |
3.4.0.a.1, 30.8.0-3.a.1.1, 39.8.0-3.a.1.2, 390.16.0.? |
$[ ]$ |
10140.k2 |
10140k1 |
10140.k |
10140k |
$2$ |
$3$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{3} \cdot 5 \cdot 13^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$390$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12096$ |
$1.056170$ |
$2809856/1755$ |
$0.89795$ |
$3.87929$ |
$[0, 1, 0, 3155, 20255]$ |
\(y^2=x^3+x^2+3155x+20255\) |
3.4.0.a.1, 30.8.0-3.a.1.2, 39.8.0-3.a.1.1, 390.16.0.? |
$[ ]$ |
10140.l1 |
10140l1 |
10140.l |
10140l |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{2} \cdot 13^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.24 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$32256$ |
$1.417593$ |
$3718856704/2132325$ |
$1.07236$ |
$4.35797$ |
$[0, 1, 0, -13745, 54900]$ |
\(y^2=x^3+x^2-13745x+54900\) |
2.3.0.a.1, 4.6.0.b.1, 8.12.0-4.b.1.4, 26.6.0.b.1, 52.12.0.e.1, $\ldots$ |
$[ ]$ |
10140.l2 |
10140l2 |
10140.l |
10140l |
$2$ |
$2$ |
\( 2^{2} \cdot 3 \cdot 5 \cdot 13^{2} \) |
\( - 2^{8} \cdot 3^{4} \cdot 5^{4} \cdot 13^{8} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.38 |
2B |
$520$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$64512$ |
$1.764168$ |
$14647977776/8555625$ |
$0.99143$ |
$4.80716$ |
$[0, 1, 0, 54700, 492948]$ |
\(y^2=x^3+x^2+54700x+492948\) |
2.3.0.a.1, 4.6.0.a.1, 8.12.0-4.a.1.2, 52.12.0.d.1, 104.24.0.?, $\ldots$ |
$[ ]$ |