Learn more

Refine search


Results (1-50 of 52 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images MW-generators
101232.a1 101232.a \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $0.960847462$ $[0, 0, 0, -4407, -43070]$ \(y^2=x^3-4407x-43070\) 2.3.0.a.1, 4.6.0.e.1, 12.12.0.m.1, 152.12.0.?, 296.12.0.?, $\ldots$ $[(138, 1406)]$
101232.a2 101232.a \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $1.921694925$ $[0, 0, 0, 1008, -5165]$ \(y^2=x^3+1008x-5165\) 2.3.0.a.1, 4.6.0.e.1, 6.6.0.a.1, 12.12.0.l.1, 148.12.0.?, $\ldots$ $[(53, 444)]$
101232.b1 101232.b \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $3.969447468$ $[0, 0, 0, -3419307, 2433709530]$ \(y^2=x^3-3419307x+2433709530\) 16872.2.0.? $[(1263, 11394)]$
101232.c1 101232.c \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 213, 90]$ \(y^2=x^3+213x+90\) 16872.2.0.? $[ ]$
101232.d1 101232.d \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $2$ $\mathsf{trivial}$ $0.659989297$ $[0, 0, 0, -88419, -9063326]$ \(y^2=x^3-88419x-9063326\) 5624.2.0.? $[(-207, 608), (2225, 103968)]$
101232.e1 101232.e \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2134299, -1200124726]$ \(y^2=x^3-2134299x-1200124726\) 3.4.0.a.1, 12.8.0-3.a.1.1, 5624.2.0.?, 16872.16.0.? $[ ]$
101232.e2 101232.e \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -41259, 418394]$ \(y^2=x^3-41259x+418394\) 3.4.0.a.1, 12.8.0-3.a.1.2, 5624.2.0.?, 16872.16.0.? $[ ]$
101232.f1 101232.f \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.171412444$ $[0, 0, 0, -12459, 532154]$ \(y^2=x^3-12459x+532154\) 5624.2.0.? $[(145, 1332)]$
101232.g1 101232.g \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -282684, -57897524]$ \(y^2=x^3-282684x-57897524\) 38.2.0.a.1 $[ ]$
101232.h1 101232.h \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.145044387$ $[0, 0, 0, -113691, 15210794]$ \(y^2=x^3-113691x+15210794\) 16872.2.0.? $[(145, 1332)]$
101232.i1 101232.i \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $1.126676480$ $[0, 0, 0, 18789, 5153866]$ \(y^2=x^3+18789x+5153866\) 16872.2.0.? $[(215, 4374)]$
101232.j1 101232.j \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 349269, -59940646]$ \(y^2=x^3+349269x-59940646\) 16872.2.0.? $[ ]$
101232.k1 101232.k \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 7989, 232954]$ \(y^2=x^3+7989x+232954\) 152.2.0.? $[ ]$
101232.l1 101232.l \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -29496, 974716]$ \(y^2=x^3-29496x+974716\) 74.2.0.? $[ ]$
101232.m1 101232.m \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $2$ $\mathsf{trivial}$ $1.352909355$ $[0, 0, 0, -6168, 188876]$ \(y^2=x^3-6168x+188876\) 38.2.0.a.1 $[(50, 74), (13, 333)]$
101232.n1 101232.n \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.713784616$ $[0, 0, 0, -963, 9666]$ \(y^2=x^3-963x+9666\) 5624.2.0.? $[(-15, 144)]$
101232.o1 101232.o \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -26355, 1797554]$ \(y^2=x^3-26355x+1797554\) 3.4.0.a.1, 12.8.0-3.a.1.2, 152.2.0.?, 456.16.0.? $[ ]$
101232.o2 101232.o \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 165165, -2530798]$ \(y^2=x^3+165165x-2530798\) 3.4.0.a.1, 12.8.0-3.a.1.1, 152.2.0.?, 456.16.0.? $[ ]$
101232.p1 101232.p \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.299227314$ $[0, 0, 0, -915, 12082]$ \(y^2=x^3-915x+12082\) 16872.2.0.? $[(-1, 114)]$
101232.q1 101232.q \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $7.902701989$ $[0, 0, 0, -233955, -43555806]$ \(y^2=x^3-233955x-43555806\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[(8305/3, 619424/3)]$
101232.q2 101232.q \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $3.951350994$ $[0, 0, 0, -231795, -44399502]$ \(y^2=x^3-231795x-44399502\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? $[(801, 16848)]$
101232.r1 101232.r \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $1.398661292$ $[0, 0, 0, -25995, 1613178]$ \(y^2=x^3-25995x+1613178\) 2.3.0.a.1, 12.6.0.c.1, 76.6.0.?, 114.6.0.?, 228.12.0.? $[(157, 1184)]$
101232.r2 101232.r \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $0.699330646$ $[0, 0, 0, -25755, 1644426]$ \(y^2=x^3-25755x+1644426\) 2.3.0.a.1, 6.6.0.a.1, 76.6.0.?, 228.12.0.? $[(-75, 1776)]$
101232.s1 101232.s \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $1.164298544$ $[0, 0, 0, -8235, -326214]$ \(y^2=x^3-8235x-326214\) 16872.2.0.? $[(345, 6156)]$
101232.t1 101232.t \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $24.13625325$ $[0, 0, 0, -33735, -2384894]$ \(y^2=x^3-33735x-2384894\) 2.3.0.a.1, 12.6.0.c.1, 2812.6.0.?, 8436.12.0.? $[(25007182905/7102, 3631288966278197/7102)]$
101232.t2 101232.t \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $12.06812662$ $[0, 0, 0, -2100, -37577]$ \(y^2=x^3-2100x-37577\) 2.3.0.a.1, 6.6.0.a.1, 2812.6.0.?, 8436.12.0.? $[(2159273/67, 3157966098/67)]$
101232.u1 101232.u \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $1.424633607$ $[0, 0, 0, -867, 8642]$ \(y^2=x^3-867x+8642\) 5624.2.0.? $[(7, 54)]$
101232.v1 101232.v \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -300747, -61644422]$ \(y^2=x^3-300747x-61644422\) 5624.2.0.? $[ ]$
101232.w1 101232.w \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -33987, 1609922]$ \(y^2=x^3-33987x+1609922\) 5624.2.0.? $[ ]$
101232.x1 101232.x \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $0.784091098$ $[0, 0, 0, -1344, 18812]$ \(y^2=x^3-1344x+18812\) 74.2.0.? $[(26, 38)]$
101232.y1 101232.y \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -2569179, -1585192822]$ \(y^2=x^3-2569179x-1585192822\) 16872.2.0.? $[ ]$
101232.z1 101232.z \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -11019, -470342]$ \(y^2=x^3-11019x-470342\) 152.2.0.? $[ ]$
101232.ba1 101232.ba \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $22.07969790$ $[0, 0, 0, -89894019, -328053223582]$ \(y^2=x^3-89894019x-328053223582\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.2, 16.24.0.f.1, $\ldots$ $[(140879879911/385, 52875168735966534/385)]$
101232.ba2 101232.ba \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $11.03984895$ $[0, 0, 0, -5618379, -5125826230]$ \(y^2=x^3-5618379x-5125826230\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.1, 12.24.0-4.b.1.3, 24.48.0-8.d.1.9, $\ldots$ $[(23760709/5, 115821114948/5)]$
101232.ba3 101232.ba \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $5.519924475$ $[0, 0, 0, -5556819, -5243639758]$ \(y^2=x^3-5556819x-5243639758\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.1, 12.12.0-4.c.1.2, 24.48.0-8.ba.1.1, $\ldots$ $[(3801709, 7412560020)]$
101232.ba4 101232.ba \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $22.07969790$ $[0, 0, 0, -354999, -78244810]$ \(y^2=x^3-354999x-78244810\) 2.6.0.a.1, 4.12.0.b.1, 8.24.0.d.2, 12.24.0-4.b.1.1, 24.48.0-8.d.2.1, $\ldots$ $[(-10190260967/5954, 46605390612165/5954)]$
101232.ba5 101232.ba \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $11.03984895$ $[0, 0, 0, -59754, 4010447]$ \(y^2=x^3-59754x+4010447\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0.n.1, 12.12.0-4.c.1.1, 16.24.0.f.2, $\ldots$ $[(-22799/26, 43006887/26)]$
101232.ba6 101232.ba \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $44.15939580$ $[0, 0, 0, 184461, -294999838]$ \(y^2=x^3+184461x-294999838\) 2.3.0.a.1, 4.6.0.c.1, 8.24.0.ba.2, 12.12.0-4.c.1.1, 24.48.0-8.ba.2.5, $\ldots$ $[(45141732591474661009/13783510, 303296948168517758863253684223/13783510)]$
101232.bb1 101232.bb \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $7.071942672$ $[0, 0, 0, -2739, -161422]$ \(y^2=x^3-2739x-161422\) 152.2.0.? $[(4601/8, 58867/8)]$
101232.bc1 101232.bc \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $15.67830156$ $[0, 0, 0, -171459, 876644802]$ \(y^2=x^3-171459x+876644802\) 152.2.0.? $[(32416834/103, 185705279126/103)]$
101232.bd1 101232.bd \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $16.05931150$ $[0, 0, 0, -105984, 1826928]$ \(y^2=x^3-105984x+1826928\) 74.2.0.? $[(2157649/356, 7483493159/356)]$
101232.be1 101232.be \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $229.1367897$ $[0, 0, 0, -6555733716, -204306139713652]$ \(y^2=x^3-6555733716x-204306139713652\) 38.2.0.a.1 $[(73064426122946472718872653974418795027852445068639329863121565024939373750501458602793078256947948804617/13330072183634636946028031796216777830783917579504, 611373841544964919912476830879539537068891963958224359917086975610809222477636645120762635715043192551261816671492212634880824723826367066309607770711184667/13330072183634636946028031796216777830783917579504)]$
101232.bf1 101232.bf \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, -929811, -345096142]$ \(y^2=x^3-929811x-345096142\) 5624.2.0.? $[ ]$
101232.bg1 101232.bg \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 144, -13392]$ \(y^2=x^3+144x-13392\) 38.2.0.a.1 $[ ]$
101232.bh1 101232.bh \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $1.268560842$ $[0, 0, 0, -11091, 448018]$ \(y^2=x^3-11091x+448018\) 5624.2.0.? $[(57, 32)]$
101232.bi1 101232.bi \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $28.56304571$ $[0, 0, 0, -8487291, -5041096022]$ \(y^2=x^3-8487291x-5041096022\) 5624.2.0.? $[(-5672436180073/73081, 20561358322711479402/73081)]$
101232.bj1 101232.bj \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $5.703397297$ $[0, 0, 0, -39663, 1162890]$ \(y^2=x^3-39663x+1162890\) 2.3.0.a.1, 4.6.0.e.1, 12.12.0.m.1, 152.12.0.?, 296.12.0.?, $\ldots$ $[(16270/7, 1701260/7)]$
101232.bj2 101232.bj \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\Z/2\Z$ $11.40679459$ $[0, 0, 0, 9072, 139455]$ \(y^2=x^3+9072x+139455\) 2.3.0.a.1, 4.6.0.e.1, 6.6.0.a.1, 12.12.0.l.1, 148.12.0.?, $\ldots$ $[(1897185/121, 3309926760/121)]$
101232.bk1 101232.bk \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $1$ $\mathsf{trivial}$ $13.59953210$ $[0, 0, 0, -379923, -90137390]$ \(y^2=x^3-379923x-90137390\) 16872.2.0.? $[(32847521/115, 181796530944/115)]$
101232.bl1 101232.bl \( 2^{4} \cdot 3^{2} \cdot 19 \cdot 37 \) $0$ $\mathsf{trivial}$ $1$ $[0, 0, 0, 1917, -2430]$ \(y^2=x^3+1917x-2430\) 16872.2.0.? $[ ]$
Next   displayed columns for results