Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
125.6-b2
125.6-b
$4$
$10$
3.3.169.1
$3$
$[3, 0]$
125.6
\( 5^{3} \)
\( 5^{14} \)
$2.59757$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.4.1
$1$
\( 2 \)
$1$
$22.00024918$
0.846163430
\( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \)
\( \bigl[a^{2} - 3\) , \( -a^{2} + a + 2\) , \( a^{2} - 2\) , \( 5 a^{2} - 8 a - 20\) , \( 14 a^{2} - 19 a - 53\bigr] \)
${y}^2+\left(a^{2}-3\right){x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+a+2\right){x}^{2}+\left(5a^{2}-8a-20\right){x}+14a^{2}-19a-53$
125.6-c2
125.6-c
$4$
$10$
3.3.169.1
$3$
$[3, 0]$
125.6
\( 5^{3} \)
\( 5^{8} \)
$2.59757$
$(-a^2+2a+3), (-a+1)$
$1$
$\Z/10\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.1.1
$1$
\( 2 \cdot 5 \)
$0.752165662$
$90.63000163$
1.573125580
\( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \)
\( \bigl[a^{2} - a - 3\) , \( a^{2} - 2 a - 3\) , \( a^{2} - 3\) , \( 5 a^{2} - 7 a - 18\) , \( -4 a^{2} + 4 a + 13\bigr] \)
${y}^2+\left(a^{2}-a-3\right){x}{y}+\left(a^{2}-3\right){y}={x}^{3}+\left(a^{2}-2a-3\right){x}^{2}+\left(5a^{2}-7a-18\right){x}-4a^{2}+4a+13$
625.2-k4
625.2-k
$4$
$10$
3.3.169.1
$3$
$[3, 0]$
625.2
\( 5^{4} \)
\( 5^{14} \)
$3.39674$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.4.1
$1$
\( 2^{2} \)
$1$
$34.65821666$
2.666016666
\( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \)
\( \bigl[a^{2} - 2\) , \( a\) , \( a\) , \( 23 a^{2} - 24 a - 76\) , \( 54 a^{2} - 61 a - 187\bigr] \)
${y}^2+\left(a^{2}-2\right){x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(23a^{2}-24a-76\right){x}+54a^{2}-61a-187$
625.2-s4
625.2-s
$4$
$10$
3.3.169.1
$3$
$[3, 0]$
625.2
\( 5^{4} \)
\( 5^{20} \)
$3.39674$
$(-a^2+2a+3), (-a+1)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
$2, 5$
2B , 5B.4.1
$1$
\( 2^{3} \)
$1$
$13.24055067$
2.037007796
\( -\frac{2843862}{3125} a^{2} + \frac{4771131}{3125} a + \frac{12367976}{3125} \)
\( \bigl[a\) , \( -a^{2} + 2\) , \( a^{2} - 2\) , \( 34 a^{2} - 43 a - 123\) , \( -76 a^{2} + 94 a + 273\bigr] \)
${y}^2+a{x}{y}+\left(a^{2}-2\right){y}={x}^{3}+\left(-a^{2}+2\right){x}^{2}+\left(34a^{2}-43a-123\right){x}-76a^{2}+94a+273$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.