Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
10.1-g1 10.1-g 3.3.1620.1 \( 2 \cdot 5 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $23.62561048$ 0.586983011 \( \frac{5821540049}{160} a^{2} - \frac{506086881}{10} a - \frac{58596354789}{160} \) \( \bigl[a + 1\) , \( -a^{2} + 3 a + 8\) , \( a + 1\) , \( 10 a^{2} - 12 a - 85\) , \( 27 a^{2} - 31 a - 264\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a^{2}+3a+8\right){x}^{2}+\left(10a^{2}-12a-85\right){x}+27a^{2}-31a-264$
50.3-d1 50.3-d 3.3.1620.1 \( 2 \cdot 5^{2} \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $10.56569421$ 7.875203495 \( \frac{5821540049}{160} a^{2} - \frac{506086881}{10} a - \frac{58596354789}{160} \) \( \bigl[1\) , \( -a^{2} + 3 a + 8\) , \( a^{2} - a - 8\) , \( 167 a^{2} - 391 a - 1050\) , \( 2162 a^{2} - 5308 a - 12688\bigr] \) ${y}^2+{x}{y}+\left(a^{2}-a-8\right){y}={x}^{3}+\left(-a^{2}+3a+8\right){x}^{2}+\left(167a^{2}-391a-1050\right){x}+2162a^{2}-5308a-12688$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.