Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
52.1-g3
52.1-g
$3$
$9$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
52.1
\( 2^{2} \cdot 13 \)
\( 2^{14} \cdot 13^{2} \)
$1.93462$
$(2,a), (2,a+1), (13,a+6)$
0
$\mathsf{trivial}$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$3$
3B
$1$
\( 2 \)
$1$
$21.53136195$
5.341273529
\( \frac{12167}{26} \)
\( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -872 a + 3952\) , \( -48214 a + 218464\bigr] \)
${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-872a+3952\right){x}-48214a+218464$
52.1-j3
52.1-j
$3$
$9$
\(\Q(\sqrt{65}) \)
$2$
$[2, 0]$
52.1
\( 2^{2} \cdot 13 \)
\( 2^{2} \cdot 13^{2} \)
$1.93462$
$(2,a), (2,a+1), (13,a+6)$
$1$
$\Z/3\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
✓
✓
$3$
3B.1.1
$1$
\( 2 \)
$0.886022883$
$21.53136195$
1.051664571
\( \frac{12167}{26} \)
\( \bigl[1\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \)
${y}^2+{x}{y}+{y}={x}^{3}$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.