Learn more

Refine search


Results (displaying both matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
52.1-g3 52.1-g \(\Q(\sqrt{65}) \) \( 2^{2} \cdot 13 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $21.53136195$ 5.341273529 \( \frac{12167}{26} \) \( \bigl[a\) , \( -a + 1\) , \( 0\) , \( -872 a + 3952\) , \( -48214 a + 218464\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(-872a+3952\right){x}-48214a+218464$
52.1-j3 52.1-j \(\Q(\sqrt{65}) \) \( 2^{2} \cdot 13 \) $1$ $\Z/3\Z$ $\mathrm{SU}(2)$ $0.886022883$ $21.53136195$ 1.051664571 \( \frac{12167}{26} \) \( \bigl[1\) , \( 0\) , \( 1\) , \( 0\) , \( 0\bigr] \) ${y}^2+{x}{y}+{y}={x}^{3}$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.