Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
24.1-a5 24.1-a \(\Q(\sqrt{15}) \) \( 2^{3} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $37.20447790$ 1.200769361 \( \frac{28756228}{3} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( -64\) , \( 220\bigr] \) ${y}^2={x}^{3}-{x}^{2}-64{x}+220$
24.1-b5 24.1-b \(\Q(\sqrt{15}) \) \( 2^{3} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $37.20447790$ 2.401538722 \( \frac{28756228}{3} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -131 a - 500\) , \( 1474 a + 5714\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-131a-500\right){x}+1474a+5714$
24.1-c5 24.1-c \(\Q(\sqrt{15}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.665930347$ $5.683508517$ 2.444712118 \( \frac{28756228}{3} \) \( \bigl[0\) , \( 1\) , \( 0\) , \( -64\) , \( -220\bigr] \) ${y}^2={x}^{3}+{x}^{2}-64{x}-220$
24.1-d5 24.1-d \(\Q(\sqrt{15}) \) \( 2^{3} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.748483442$ $5.683508517$ 2.196762362 \( \frac{28756228}{3} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( -127 a - 489\) , \( -1860 a - 7203\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+\left(-127a-489\right){x}-1860a-7203$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.