Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
48.5-e2 48.5-e \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.247932164$ 1.224918538 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -1353 a - 4428\) , \( -26659 a - 87307\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-1353a-4428\right){x}-26659a-87307$
48.5-f2 48.5-f \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.296098717$ $13.51429459$ 1.060040542 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( -8 a + 32\) , \( -34 a + 146\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-8a+32\right){x}-34a+146$
96.3-c2 96.3-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $13.51429459$ 3.580024093 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -43 a + 185\) , \( -470 a + 2011\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-43a+185\right){x}-470a+2011$
96.3-k2 96.3-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.247932164$ 2.449837077 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -254 a - 829\) , \( -1709 a - 5595\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-254a-829\right){x}-1709a-5595$
144.4-f2 144.4-f \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $5.996913689$ 3.177242489 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -14 a - 41\) , \( 14 a + 48\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-14a-41\right){x}+14a+48$
144.4-g2 144.4-g \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.946866677$ 1.840269938 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -7286 a + 31183\) , \( -910322 a + 3891612\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-7286a+31183\right){x}-910322a+3891612$
192.6-d2 192.6-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.508139335$ 1.126930584 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -71829 a - 235234\) , \( -8626826 a - 28252141\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-71829a-235234\right){x}-8626826a-28252141$
192.6-l2 192.6-l \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.579639355$ $7.344689285$ 3.073434351 \( \frac{152551}{768} a + \frac{476915}{384} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -2 a + 5\) , \( -a + 2\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-2a+5\right){x}-a+2$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.