Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.3-a3 96.3-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.605017115$ 1.488127972 \( \frac{14580432307}{559872} \) \( \bigl[a\) , \( 0\) , \( a\) , \( 51 a - 308\) , \( 503 a - 2591\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(51a-308\right){x}+503a-2591$
96.3-l3 96.3-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.178695124$ 2.213926761 \( \frac{14580432307}{559872} \) \( \bigl[a\) , \( 1\) , \( a\) , \( -1060618 a - 3473437\) , \( 1114243482 a + 3649055163\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(-1060618a-3473437\right){x}+1114243482a+3649055163$
96.4-a3 96.4-a \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $1.605017115$ 1.488127972 \( \frac{14580432307}{559872} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( -53 a - 257\) , \( -504 a - 2088\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-53a-257\right){x}-504a-2088$
96.4-l3 96.4-l \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.178695124$ 2.213926761 \( \frac{14580432307}{559872} \) \( \bigl[a + 1\) , \( -a + 1\) , \( a + 1\) , \( 1060616 a - 4534055\) , \( -1114243483 a + 4763298645\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(1060616a-4534055\right){x}-1114243483a+4763298645$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.