Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.6-d1 96.6-d \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $2.631200657$ 1.394044163 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( -1340 a - 4385\) , \( -49989 a - 163710\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(-1340a-4385\right){x}-49989a-163710$
96.6-f1 96.6-f \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $7.072896391$ 3.747312051 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -a + 1\) , \( a + 1\) , \( 2246 a - 9598\) , \( 122571 a - 523989\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}+\left(-a+1\right){x}^{2}+\left(2246a-9598\right){x}+122571a-523989$
192.6-k1 192.6-k \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\mathsf{trivial}$ $\mathrm{SU}(2)$ $0.522611832$ $30.54628654$ 8.457854761 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -a\) , \( a + 1\) , \( 29722 a - 127053\) , \( -5712610 a + 24420925\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(29722a-127053\right){x}-5712610a+24420925$
192.6-s1 192.6-s \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\mathsf{trivial}$ $\mathrm{SU}(2)$ $1$ $1.218492441$ 0.322786533 \( -\frac{62998269440}{3} a - 68771386368 \) \( \bigl[0\) , \( -1\) , \( a + 1\) , \( -25 a - 84\) , \( -127 a - 418\bigr] \) ${y}^2+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(-25a-84\right){x}-127a-418$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.