Learn more

Refine search


Results (4 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.4-d1 96.4-d \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $18.75454831$ 2.484100608 \( -\frac{31759}{48} a + \frac{135557}{48} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 749 a - 3204\) , \( -17453 a + 74611\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(749a-3204\right){x}-17453a+74611$
96.4-g1 96.4-g \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $25.79187584$ 1.708108705 \( -\frac{31759}{48} a + \frac{135557}{48} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( 4 a + 16\) , \( 7 a + 22\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(4a+16\right){x}+7a+22$
192.3-a1 192.3-a \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.467633991$ $12.89593792$ 4.792618154 \( -\frac{31759}{48} a + \frac{135557}{48} \) \( \bigl[0\) , \( a - 1\) , \( 0\) , \( -124 a - 400\) , \( 28801 a + 94318\bigr] \) ${y}^2={x}^{3}+\left(a-1\right){x}^{2}+\left(-124a-400\right){x}+28801a+94318$
192.3-g1 192.3-g \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $9.377274155$ 1.242050304 \( -\frac{31759}{48} a + \frac{135557}{48} \) \( \bigl[0\) , \( -1\) , \( 0\) , \( 23 a - 98\) , \( -102 a + 436\bigr] \) ${y}^2={x}^{3}-{x}^{2}+\left(23a-98\right){x}-102a+436$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.