Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
48.4-e3 48.4-e \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.49586432$ 1.224918538 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a\) , \( -a - 1\) , \( a\) , \( -9704 a - 31777\) , \( 958322 a + 3138427\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-9704a-31777\right){x}+958322a+3138427$
48.4-f3 48.4-f \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.184394869$ $3.378573647$ 1.060040542 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a\) , \( 1\) , \( a\) , \( 347 a - 1483\) , \( 7257 a - 31023\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+{x}^{2}+\left(347a-1483\right){x}+7257a-31023$
96.4-c3 96.4-c \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.378573647$ 3.580024093 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a + 1\) , \( -1\) , \( a + 1\) , \( 64 a - 280\) , \( 553 a - 2375\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-{x}^{2}+\left(64a-280\right){x}+553a-2375$
96.4-k3 96.4-k \(\Q(\sqrt{57}) \) \( 2^{5} \cdot 3 \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $18.49586432$ 2.449837077 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a + 1\) , \( a - 1\) , \( 0\) , \( -52161 a - 170820\) , \( 11740716 a + 38449872\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-52161a-170820\right){x}+11740716a+38449872$
144.5-f3 144.5-f \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.998456844$ 3.177242489 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 314230 a - 1343303\) , \( 186465148 a - 797123070\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(314230a-1343303\right){x}+186465148a-797123070$
144.5-g3 144.5-g \(\Q(\sqrt{57}) \) \( 2^{4} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.946866677$ 1.840269938 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a\) , \( a\) , \( a\) , \( -90 a - 326\) , \( -1235 a - 3991\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+a{x}^{2}+\left(-90a-326\right){x}-1235a-3991$
192.7-d3 192.7-d \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.508139335$ 1.126930584 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a\) , \( a - 1\) , \( a\) , \( -731 a - 2400\) , \( -21780 a - 71329\bigr] \) ${y}^2+a{x}{y}+a{y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-731a-2400\right){x}-21780a-71329$
192.7-l3 192.7-l \(\Q(\sqrt{57}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $1.579639355$ $3.672344642$ 3.073434351 \( -\frac{24913903427}{36} a + \frac{106505465453}{36} \) \( \bigl[a\) , \( -a - 1\) , \( 0\) , \( 18355 a - 78466\) , \( 2660510 a - 11373460\bigr] \) ${y}^2+a{x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(18355a-78466\right){x}+2660510a-11373460$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.