Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
1024.1-b4 1024.1-b \(\Q(\sqrt{5}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $13.36728142$ 1.494507497 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -10 \phi - 1\) , \( 15 \phi + 7\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-10\phi-1\right){x}+15\phi+7$
1024.1-d4 1024.1-d \(\Q(\sqrt{5}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $4.855651403$ 1.085756661 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( -7 \phi + 7\) , \( 9 \phi - 16\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-7\phi+7\right){x}+9\phi-16$
1024.1-g4 1024.1-g \(\Q(\sqrt{5}) \) \( 2^{10} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $6.313756918$ 1.411798966 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -10 \phi - 1\) , \( -15 \phi - 7\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-10\phi-1\right){x}-15\phi-7$
1024.1-i4 1024.1-i \(\Q(\sqrt{5}) \) \( 2^{10} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $0.758915454$ $17.38134775$ 1.474795663 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -7 \phi + 7\) , \( -9 \phi + 16\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-7\phi+7\right){x}-9\phi+16$
4096.1-h4 4096.1-h \(\Q(\sqrt{5}) \) \( 2^{12} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.436102655$ $2.427825701$ 2.645014686 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( \phi + 1\) , \( 0\) , \( -31 \phi + 26\) , \( 36 \phi - 133\bigr] \) ${y}^2={x}^{3}+\left(\phi+1\right){x}^{2}+\left(-31\phi+26\right){x}+36\phi-133$
4096.1-o4 4096.1-o \(\Q(\sqrt{5}) \) \( 2^{12} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $8.690673875$ 1.943293755 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( -\phi - 1\) , \( 0\) , \( -31 \phi + 26\) , \( -36 \phi + 133\bigr] \) ${y}^2={x}^{3}+\left(-\phi-1\right){x}^{2}+\left(-31\phi+26\right){x}-36\phi+133$
4096.1-t4 4096.1-t \(\Q(\sqrt{5}) \) \( 2^{12} \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.530312453$ $6.683640713$ 2.287063434 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( -39 \phi - 6\) , \( 114 \phi + 23\bigr] \) ${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(-39\phi-6\right){x}+114\phi+23$
4096.1-z4 4096.1-z \(\Q(\sqrt{5}) \) \( 2^{12} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.156878459$ 1.411798966 \( 14540840 a + 8987328 \) \( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( -39 \phi - 6\) , \( -114 \phi - 23\bigr] \) ${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(-39\phi-6\right){x}-114\phi-23$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.