Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
1024.1-b1
1024.1-b
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
1024.1
\( 2^{10} \)
\( - 2^{24} \)
$1.13031$
$(2)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{2} \)
$1$
$13.36728142$
1.494507497
\( -7232 a + 12032 \)
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( 5 \phi - 6\) , \( -2 \phi + 5\bigr] \)
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(5\phi-6\right){x}-2\phi+5$
1024.1-d1
1024.1-d
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
1024.1
\( 2^{10} \)
\( - 2^{24} \)
$1.13031$
$(2)$
0
$\Z/4\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{2} \)
$1$
$9.711302806$
1.085756661
\( -7232 a + 12032 \)
\( \bigl[0\) , \( 1\) , \( 0\) , \( 4 \phi - 1\) , \( -4 \phi - 1\bigr] \)
${y}^2={x}^{3}+{x}^{2}+\left(4\phi-1\right){x}-4\phi-1$
1024.1-g1
1024.1-g
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
1024.1
\( 2^{10} \)
\( - 2^{24} \)
$1.13031$
$(2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2 \)
$1$
$6.313756918$
1.411798966
\( -7232 a + 12032 \)
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( 5 \phi - 6\) , \( 2 \phi - 5\bigr] \)
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(5\phi-6\right){x}+2\phi-5$
1024.1-i1
1024.1-i
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
1024.1
\( 2^{10} \)
\( - 2^{24} \)
$1.13031$
$(2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2^{2} \)
$0.189728863$
$8.690673875$
1.474795663
\( -7232 a + 12032 \)
\( \bigl[0\) , \( -1\) , \( 0\) , \( 4 \phi - 1\) , \( 4 \phi + 1\bigr] \)
${y}^2={x}^{3}-{x}^{2}+\left(4\phi-1\right){x}+4\phi+1$
4096.1-h1
4096.1-h
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
4096.1
\( 2^{12} \)
\( - 2^{12} \)
$1.59850$
$(2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 1 \)
$0.609025663$
$19.42260561$
2.645014686
\( -7232 a + 12032 \)
\( \bigl[0\) , \( -1\) , \( 0\) , \( \phi\) , \( -\phi\bigr] \)
${y}^2={x}^{3}-{x}^{2}+\phi{x}-\phi$
4096.1-o1
4096.1-o
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
4096.1
\( 2^{12} \)
\( - 2^{12} \)
$1.59850$
$(2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 1 \)
$1$
$17.38134775$
1.943293755
\( -7232 a + 12032 \)
\( \bigl[0\) , \( 1\) , \( 0\) , \( \phi\) , \( \phi\bigr] \)
${y}^2={x}^{3}+{x}^{2}+\phi{x}+\phi$
4096.1-t1
4096.1-t
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
4096.1
\( 2^{12} \)
\( - 2^{12} \)
$1.59850$
$(2)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 1 \)
$0.382578113$
$26.73456285$
2.287063434
\( -7232 a + 12032 \)
\( \bigl[0\) , \( \phi - 1\) , \( 0\) , \( \phi - 1\) , \( -\phi + 2\bigr] \)
${y}^2={x}^{3}+\left(\phi-1\right){x}^{2}+\left(\phi-1\right){x}-\phi+2$
4096.1-z1
4096.1-z
$4$
$4$
\(\Q(\sqrt{5}) \)
$2$
$[2, 0]$
4096.1
\( 2^{12} \)
\( - 2^{12} \)
$1.59850$
$(2)$
0
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 1 \)
$1$
$12.62751383$
1.411798966
\( -7232 a + 12032 \)
\( \bigl[0\) , \( -\phi + 1\) , \( 0\) , \( \phi - 1\) , \( \phi - 2\bigr] \)
${y}^2={x}^{3}+\left(-\phi+1\right){x}^{2}+\left(\phi-1\right){x}+\phi-2$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.