Label
Class
Class size
Class degree
Base field
Field degree
Field signature
Conductor
Conductor norm
Discriminant norm
Root analytic conductor
Bad primes
Rank
Torsion
CM
CM
Sato-Tate
$\Q$-curve
Base change
Semistable
Potentially good
Nonmax $\ell$
mod-$\ell$ images
$Ш_{\textrm{an}}$
Tamagawa
Regulator
Period
Leading coeff
j-invariant
Weierstrass coefficients
Weierstrass equation
9.1-b2
9.1-b
$4$
$4$
\(\Q(\sqrt{94}) \)
$2$
$[2, 0]$
9.1
\( 3^{2} \)
\( 3^{35} \)
$3.00119$
$(-23a+223), (23a+223)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2 \cdot 3 \)
$7.475223809$
$2.418193004$
2.796678172
\( \frac{398380856143381357}{1853020188851841} a + \frac{7389093490087076657}{1853020188851841} \)
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( -123 a - 1167\) , \( 1585 a + 15352\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(-123a-1167\right){x}+1585a+15352$
9.1-e2
9.1-e
$4$
$4$
\(\Q(\sqrt{94}) \)
$2$
$[2, 0]$
9.1
\( 3^{2} \)
\( 3^{35} \)
$3.00119$
$(-23a+223), (23a+223)$
$1$
$\Z/2\Z$
$\textsf{no}$
$\mathrm{SU}(2)$
✓
$2$
2B
$1$
\( 2 \cdot 3 \)
$8.694191275$
$1.924242802$
2.588310615
\( \frac{398380856143381357}{1853020188851841} a + \frac{7389093490087076657}{1853020188851841} \)
\( \bigl[1\) , \( a - 1\) , \( a + 1\) , \( 14391315024746 a - 139528975934367\) , \( -28074311605273920314 a + 272190549759431737888\bigr] \)
${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(14391315024746a-139528975934367\right){x}-28074311605273920314a+272190549759431737888$
Download
displayed columns for
results
to
Text
Pari/GP
SageMath
Magma
Oscar
CSV
*The rank, regulator and analytic order of Ш are
not known for all curves in the database; curves for which these are
unknown will not appear in searches specifying one of these
quantities.