Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
96.6-a3 96.6-a \(\Q(\sqrt{33}) \) \( 2^{5} \cdot 3 \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $17.19445537$ 2.244877865 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( 1\) , \( 0\) , \( 1\) , \( 0\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+{x}^{2}+{x}$
96.6-b3 96.6-b \(\Q(\sqrt{33}) \) \( 2^{5} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.572684926$ $13.09983749$ 1.958916616 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( -a\) , \( 0\) , \( -103 a + 348\) , \( -4405 a + 14855\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-a{x}^{2}+\left(-103a+348\right){x}-4405a+14855$
192.6-c3 192.6-c \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $2.832232796$ $6.158529423$ 3.036330193 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( -516 a - 1224\) , \( -11451 a - 27165\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(-516a-1224\right){x}-11451a-27165$
192.6-d3 192.6-d \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3 \) $1$ $\Z/4\Z$ $\mathrm{SU}(2)$ $1.063230808$ $18.28720428$ 1.692341105 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( a\) , \( 0\) , \( 2 a + 14\) , \( -3 a + 27\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+a{x}^{2}+\left(2a+14\right){x}-3a+27$
288.6-e3 288.6-e \(\Q(\sqrt{33}) \) \( 2^{5} \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $9.927223440$ 0.864053893 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( -a - 1\) , \( a + 1\) , \( -245 a - 581\) , \( 3455 a + 8196\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-245a-581\right){x}+3455a+8196$
288.6-f3 288.6-f \(\Q(\sqrt{33}) \) \( 2^{5} \cdot 3^{2} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.753402944$ $7.563194706$ 3.967670656 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -7 a + 23\) , \( -76 a + 256\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-7a+23\right){x}-76a+256$
576.7-i3 576.7-i \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $3.555628620$ 1.237910991 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( a + 1\) , \( a + 1\) , \( -190 a + 659\) , \( 11194 a - 37726\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-190a+659\right){x}+11194a-37726$
576.7-l3 576.7-l \(\Q(\sqrt{33}) \) \( 2^{6} \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $10.55812231$ 1.837933184 \( \frac{383119}{9} a + \frac{909601}{9} \) \( \bigl[a + 1\) , \( a + 1\) , \( 0\) , \( -29 a - 68\) , \( 82 a + 195\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(a+1\right){x}^{2}+\left(-29a-68\right){x}+82a+195$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.