Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
18.1-a8 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.531367511$ 1.606704330 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( 32558 a - 86161\) , \( 5180690 a - 13706875\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(32558a-86161\right){x}+5180690a-13706875$
18.1-b8 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 32558 a - 86158\) , \( -5180691 a + 13706871\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(32558a-86158\right){x}-5180691a+13706871$
162.1-a8 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 293022 a - 775440\) , \( -140361053 a + 371361301\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(293022a-775440\right){x}-140361053a+371361301$
162.1-b8 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.177122503$ 1.071136220 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 293022 a - 775440\) , \( 140361053 a - 371361301\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(293022a-775440\right){x}+140361053a-371361301$
432.1-b8 432.1-b \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $3.885572036$ $1.010534464$ 2.968158376 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -399552 a - 1057344\) , \( 223692872 a + 591834184\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-399552a-1057344\right){x}+223692872a+591834184$
432.1-i8 432.1-i \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.372544023$ 2.252934490 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -399552 a - 1057347\) , \( -224092424 a - 592891530\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-399552a-1057347\right){x}-224092424a-592891530$
432.2-b8 432.2-b \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) $1$ $\Z/2\Z$ $\mathrm{SU}(2)$ $0.971393009$ $1.010534464$ 2.968158376 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 53992 a - 144544\) , \( 11203576 a - 29616296\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(53992a-144544\right){x}+11203576a-29616296$
432.2-i8 432.2-i \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) 0 $\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.372544023$ 2.252934490 \( \frac{2350503708439404473473}{13122} a + \frac{6218848268321376696725}{13122} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 53990 a - 144547\) , \( -11149585 a + 29471750\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(53990a-144547\right){x}-11149585a+29471750$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.