Learn more

Refine search


Results (8 matches)

  displayed columns for results
Label Class Base field Conductor norm Rank Torsion CM Sato-Tate Regulator Period Leading coeff j-invariant Weierstrass coefficients Weierstrass equation
18.1-a7 18.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.125470044$ 1.606704330 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a\) , \( a - 1\) , \( a + 1\) , \( 2273 a - 6016\) , \( 59627 a - 157762\bigr] \) ${y}^2+a{x}{y}+\left(a+1\right){y}={x}^{3}+\left(a-1\right){x}^{2}+\left(2273a-6016\right){x}+59627a-157762$
18.1-b7 18.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{2} \) 0 $\Z/2\Z\oplus\Z/4\Z$ $\mathrm{SU}(2)$ $1$ $8.501880177$ 1.606704330 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[1\) , \( -a - 1\) , \( a + 1\) , \( 2273 a - 6013\) , \( -59628 a + 157758\bigr] \) ${y}^2+{x}{y}+\left(a+1\right){y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(2273a-6013\right){x}-59628a+157758$
162.1-a7 162.1-a \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $2.833960059$ 1.071136220 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a\) , \( -1\) , \( 0\) , \( 20457 a - 54135\) , \( -1643612 a + 4348600\bigr] \) ${y}^2+a{x}{y}={x}^{3}-{x}^{2}+\left(20457a-54135\right){x}-1643612a+4348600$
162.1-b7 162.1-b \(\Q(\sqrt{7}) \) \( 2 \cdot 3^{4} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.708490014$ 1.071136220 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[1\) , \( -1\) , \( 0\) , \( 20457 a - 54135\) , \( 1643612 a - 4348600\bigr] \) ${y}^2+{x}{y}={x}^{3}-{x}^{2}+\left(20457a-54135\right){x}+1643612a-4348600$
432.1-b7 432.1-b \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.942786018$ $2.021068929$ 2.968158376 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a + 1\) , \( -a - 1\) , \( 0\) , \( -24972 a - 66084\) , \( 3497216 a + 9252736\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}+\left(-a-1\right){x}^{2}+\left(-24972a-66084\right){x}+3497216a+9252736$
432.1-i7 432.1-i \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.745088047$ 2.252934490 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a + 1\) , \( 0\) , \( a + 1\) , \( -24972 a - 66087\) , \( -3522188 a - 9318822\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}+\left(-24972a-66087\right){x}-3522188a-9318822$
432.2-b7 432.2-b \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1.942786018$ $2.021068929$ 2.968158376 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a + 1\) , \( -1\) , \( 0\) , \( 3772 a - 10084\) , \( 131200 a - 346784\bigr] \) ${y}^2+\left(a+1\right){x}{y}={x}^{3}-{x}^{2}+\left(3772a-10084\right){x}+131200a-346784$
432.2-i7 432.2-i \(\Q(\sqrt{7}) \) \( 2^{4} \cdot 3^{3} \) 0 $\Z/2\Z\oplus\Z/2\Z$ $\mathrm{SU}(2)$ $1$ $0.745088047$ 2.252934490 \( \frac{15840177853915205}{86093442} a + \frac{20954710660855016}{43046721} \) \( \bigl[a + 1\) , \( -a\) , \( a + 1\) , \( 3770 a - 10087\) , \( -127429 a + 336698\bigr] \) ${y}^2+\left(a+1\right){x}{y}+\left(a+1\right){y}={x}^{3}-a{x}^{2}+\left(3770a-10087\right){x}-127429a+336698$
  displayed columns for results

  *The rank, regulator and analytic order of Ш are not known for all curves in the database; curves for which these are unknown will not appear in searches specifying one of these quantities.